ECOFRAM Terrestrial Draft Report

Ecological Committee on FIFRA Risk
Assessment M ethods
(ECOFRAM)

May 10, 1999




ECOFRAM TERRESTRIAL WORKGROUP MEMBERS

Edward Fite, Chair
Environmental Fate and Effects Division,
EPA Office of Pesticide Programs

Alan Baril,
Canadian Wildlife Service

Richard S. Bennett, *
Ecological Planning & Toxicology, Inc.

Lou Best,
lowa State University

Larry W. Brewer,
Ecotoxicology and Biosystems Associates,
Inc.

Kristin Brugger,
Du Pont Agricultural Products

Kenneth R. Dixon,
Texas Tech University

Larry Douglass,*
University of Maryland

John D. Eisemann,
Animal, Plant and Health Inspection Service
U.S. Department of Agriculture

William A. Erickson,
Environmental Fate and Effects Division, EPA
Office of Pesticide Programs

David Farrar,
Environmental Fate and Effects Division, EPA
Office of Pesticide Programs

Susan A. Ferenc,
International Life Science Institute

David L. Fischer,
Bayer Corporation

D. Michad Fry,
University of California (Representing the
National Audubon Society)

James A. Gagne,
American Cyanamid Company

Andy Hart,
Central Science Lab, UK MAFF

Michael Hooper,
Texas Tech University

Thomas E. Lacher Jr.,
Texas A&M University

Dennis Laskowski,
Dow Elanco (retired)

Paul J. Mastradone,
Registration Division, EPA Office of Pesticide
Programs

Monte Mayes,
The Dow Chemical Company

Robert Menzer,
EPA Office of Research and Development

Daryl Moorhead,
University of Toledo

Henry Nelson,
Environmental Fate and Effects Division, EPA
Office of Pesticide Programs

Raymond J. O'Connor, *
University of Maine



ECOFRAM TERRESTRIAL WORKGROUP MEMBERS CONT.

Ron Parker,
Environmental Fate and Effects Division, EPA
Office of Pesticide Programs

Diana Post,
Rachel Carson Council Incorporated

Carolyn Raffensperger, *
Science and Environmental Health Network

Robert Ringer,
Michigan State University (retired)

Jennifer L. Shaw,
Zeneca Ag Products
Michad R. Willig, *

Texas Tech University

Duane Wolf,
University of Arkansas

* Former members of the Terrestrial Workgroup



CONTENTS

LIST OF FIGURES . . o\ttt ettt e e e e e e e e e e e
LIST OF TABLES . .\ ot ettt ettt et e e e e e e e e e e e e
ACKNOWLEDGMENTS & o ot vttt ettt e e e e e e e e e e e et e e e e e e
EXECUTIVE SUMMARY . oottt ittt ettt e et et e et e ettt
1.0 INTRODUCTION . ..o e e e e e e 11
11 BACKGROUND ... e e e e e e 11
12 THE CHARGE TOECOFRAM . . ... e e 1-2
13 FOCUSOF THE REPORT . ... . e e 1-4
14 ROLE OF THE NEW EPA GUIDELINES ........... ... ... ... ...... 1-4
141 ProblemFormulation ............ ... 1-5
1.4.2 Anayssof Exposure and Effects (Toxicity) .................... 1-5
143 Risk Characterization .............. i, 1-6
15, TERRESTRIAL WORKGROUPS APPROACH TO ADDRESSING THE
CHARGE . . . e 1-6
16 ORGANIZATION OF REPORT . ... e e e 1-7
1.7 A BRIEF OVERVIEW ON PROBABILISTIC ECOLOGICAL
RISK ASSESSMENT ... e e 1-8
1.7.1 Why Do A Probabilistic Ecological Risk Assessment? ............. 1-8
1.7.2 What is Probabilistic Ecological Risk Assessment? .............. 1-10
1.7.3 Uncertainty and Probabilistic Risk Assessment . ................ 1-11
1.7.4 EPA Guidance on Probabilistic Risk Assessment .. .............. 1-13

1.7.5 Application of Probabilistic Risk Assessment to

Terrestrial Ecotoxicology .. ... 1-16
1.7.6 Potential Problemsin Applying Probabilistic Risk
Assessment to Ecological Systems .. ... ... 1-18



1.8

1.9

OVERVIEW OF METHODS CONSIDERED FOR PERFORMING
ECOLOGICAL PESTICIDE ASSESSMENTS AND INTEGRATION
INTO THE REGULATORY PROCESS ...... ... ... ...
BASIC MODEL STRUCTURE FOR PROBABILISTIC
RISK ASSESSMENT . .. e
1.9.1 PDFs, Norma and Lognormal PDFs,andCDFs ................
19.2 MonteCarloSmulations. .. ........... ...
1.9.3 Functiona Relationships Between Risks, Dose,
and Dose-Response Parameters . ...
1.9.4 Basic Stepsin Generating a Probabilistic Risk Assessment ........
1941 Stepl: Exposure Assessment .....................
1942 Step2: EffectsAssessment ............. ... ...
1943 Step 3: Generationof aRisk PDF ...................
1944 Step 4: Generation of aRisk CDF and
(1-CDF) fromtheRiSKk PDF ......................

20 PROBLEM FORMULATION ... e

21

22
2.3
24
2.5
2.6

ASSESSMENT QUESTION (ENDPOINTS) AND

CONCEPTUAL MODELS . ... e
RISK MANAGEMENT QUESTIONS . . .. ... ...
TYPESOF ECOLOGICAL EFFECTS . ... ..
MAJORVARIABLES . . ...
CONCEPTUAL MODEL AND ASSESSMENT ENDPOINTS ..........
ADDITIONAL CONSIDERATIONS FOR PROBLEM

FORMULATION FORPESTICIDES . ... ...
26.1 Formulationand UsePatterns . ............ ...,
2.6.2 DefiningtheEcosystema RIiSK .. ...t
263 TimeScae . ...
2.6.4 ldentificationof Speciesat Risk . ........... ... ... ..



3.0

EXPOSURE ASSESSMENT ... e 31
31 INTRODUCTION . .. e e 31
3.1.1 Objectiveof an Exposure Assessment . ............covvinennn... 31
3.1.2 Conceptual Model of Exposure Pathways . ..................... 3-2
3.1.3 Content of the Exposure Assessment Chapter . .................. 34
3.2 FACTORSAFFECTINGDOSE ....... ... e 34
3.2.1 Physical Chemica and Biological Componentsof Dose .. .......... 34
3.2.2 Information Applicableto all Dose Equationsin Sections 3.3
through 3.9 . .. .. 3-7
3.3 DOSE RESULTING FROM INGESTION OF CONTAMINATED FOOD .. 3-9
3.3.1 Detaled Equationsfor Dose Through Food. . ................... 3-9
3.3.2 Simplified equations for dosethroughfood .................... 3-12
3.3.3 PT - Proportion of diet obtainedintreatedarea. . ............... 314
334 TFIR-Tota FoodIntakeRate . ............................ 3-22
3.3.5 PD- Proportions of Different Food TypesintheDiet ............ 3-28
3.3.6 FDR-Freshtodryweightratio ...............ccoiuiiun... 3-30
337 AV -AVOIdaNCe . . ... 3-32
338 C—-ResduesinFood .............ciiiiiiiiiiii, 3-36
3.39 W-BODY WEIGHT ... ... 3-38
34 DOSE RESULTING FROM INGESTION
OF CONTAMINATED WATER . ... .. e 3-39
3.4.1 DoseEquationsfor Ingestion of Contaminated Water ............ 3-39
3.4.2 Estimation of Total Water IngestionRate . .................... 3-41
3.4.3 Proportional Intake from Different Sources of Water (PW) ........ 3-42
3.4.4 Pedticide ConcentrationsinWater ............ ... ..., 3-42
35 DOSE RESULTING FROM INGESTION OF GRANULES ............ 3-43
3.5.1 Overview of Granular Pesticide Exposure to Wildlife ............ 3-43
3.5.2 Review of Existing Assessment Methods . . .................... 3-44
3.5.3 Conceptual Moddl for Granule Exposure Assessment . ........... 3-45

vi



3.6

3.7

3.8

3.9

3.10

3.5.4 Implementation of the Conceptual Model: Development of GEM ... 3-51

355 GranuleIngestionDOSe . .. ... v i it 3-52
DOSE RESULTING FROM INGESTION OF CONTAMINATED SOIL .. 3-54
3.6.1 Dose Equations for Ingestion of Contaminated Soil .............. 3-54
3.6.2 Edtimation of Soil IngestionRate (SIR) ............. ... ....... 3-55
3.6.3 Pedticide Concentrationsin Soil . ............ ... ... ... ..., 3-56
OVERALL INGESTION DOSE . ...... ... et 3-56
3.7.1 Combining Ingestion Dosesto Give an Overall Ingestion Dose . . . . . 3-56
3.7.2 Problems With Combining Overal Ingestion, Inhalation, and Overall

Dermal DOSES . . ..o 3-58
DOSE RESULTING FROM INHALATION OF CONTAMINATED AIR . 3-58
3.8.1 Dose Equations for Inhalation of Contaminated Air .. ............ 3-59
3.8.2 Edtimationof InhalationRate ............. .. ... ... ... ..... 3-60
3.8.3 Estimation of Pesticide Concentrationsin Air .................. 3-61
DOSE RESULTING FROM DERMAL CONTACT WITH
CONTAMINATED ENVIRONMENTAL MEDIA . ... ... ... . ... ... 3-61
3.9.1 Dose Equations for Dermal Contact With Contaminated

Environmental Media . ......... ... ... . 3-62
3.9.2 CombiningDerma DOSES . ...t 3-64
3.9.3 Birdand Mammal Skin Surface Areas . . ............ .. ... ..., 3-65
ESTIMATING PESTICIDE CONCENTRATIONS IN ENVIRONMENTAL
MEDIA e 3-66
3.10.1 Pesticide Mass Balance Equations and Their Solutions . .......... 3-67
3.10.2 Computer Models for Estimating Pesticide Concentrations in

Environmental Media . ........ ... ... ... 371
3.10.3 Computational Methods for Volatilization & ResiduesinAir..... .. 3-76
3.10.4 Pedticide Dissipation Kineticsin Environmental Media ........... 3-77
3.10.5 U.S. EPA/OPP Required Pesticide Fate and/or Residue Studies . ... 3-80

Vil



3.10.6 Environmental Databases ............. ... .. . . . . o L. 3-83
3.10.6.1 Fate, Spray Drift, Pesticide Use, Crop, Soil, and Weather

Databhases . ... 3-83
3.10.6.2 Foliar ResidueDatabases . . .. .. ........ .. ..., 3-85
3.10.6.3 Insect and Other Terrestria Invertebrate Residue Databases 3-86
3.10.6.4 Water ResidueDatabases . .............. ... ...... 3-89

3.10.7 Recommendations for Improving Estimates and Determinations of

Pesticide Concentrationsin Environmental Media . .. ............ 3-90
3.10.7.1 Deficienciesin ExistingModels ... ................... 3-90
3.10.7.2 Fate and Residue Data Gaps for V egetation, Insects and Soil
Invertebrates . . ... 3-92
3.10.7.3 Fate and Residue Data Gaps for Soil and Water .. ........ 3-93
3.10.7.4 Fate and Residue Data Gapsfor Air ... ................ 3-95
3.10.7.5 Sdlection and Fitting of PDFs for Modeling Input and Residue
Data . ..... .. 3-96
3.10.7.6 Establishing Correlations Between the Input Variables for Monte
CaloSmulations . ........... ... ... 3-96
311 OUTPUTSFROM AND INPUTSTO AN EXPOSURE ASSESSMENT .. 3-97
3.11.1 Monte Carlo Based Generation of aDose PDF . ................ 3-97
3.11.2 Statistical Distributions of Pesticide Residue and Fate Data . . . . . . . . 3-98

3.11.3 Theoretical Lognormal PDFsfor UTAB Time

ZeroFoliar Residues .. ... 3-99
3.11.4 Theoretica Lognormal PDFs for Foliar Dissipation Half-lives . . . . . 3-103
3.11.5 Theoretical Lognormal PDFs for Chlorpyrifos Half-livesin Soil and

Soil/Water Partition Coefficients . .. .......... .. ... ... ..... 3-107
3.11.6 Lognormal CDFsfor Invertebrate ResidueData ............... 3-111
3.11.7 Distributions of Biological Factors AffectingDose ............. 3-113

viii



3.12 LEVELSOF REFINEMENT FOR EXPOSURE ASSESSMENT ....... 3-113

4.0 EFFECTS ASSESSMENT . .. 4-1
4.1 OBJECTIVE AND SCOPE OF EFFECTS ASSESSMENT . ............. 4-1
411 INtroduCtioN . . ..ot e 4-1

412 OVEIVIEW .ottt e e 4-3
4121 Routeof EXPOSUre .. ...t 4-3
41.22DataNeeds . .. ... ..o 4-3

4.1.2.3 The Dose-Response Relationship . .. .......... .ot 4-4

4.1.2.4 Factors That Influence the Dose-Response Relationship . .. .. 4-4

4.1.2.5 Higher-tier Dose Response Methods .. ................. 4-5

4.1.2.6 Sublethal and Indirect Effects ......................... 4-6

4.1.2.7 Completing the Effects Assessment . .................... 4-6

4.1.3 Scopeof EffectsAssessment .. ... 4-7
413 1Routesof EXpPOSUre . . ...t 4-9

4.1.3.2 Time Scaleand Dose Calculations . .. .................. 4-10

4.1.3.3 Distribution and EliminationRates .. .................. 4-11

4.1.4 Mechanisticand Empirical Models ................ ... ... .... 4-14

4.2 SUITABILITY OF CURRENT TOXICITY TESTS .................. 4-16
42.1 AcuteOra ToxiCity TeSt . ...t e 4-16

422 AcuteDietary TeSt . ...t 4-18

423 AvianReproduction Test ............c.iiiiiiiiiina. 4-20

424 SUMMATY ..ottt e e e e 4-22

4.3 INDIRECT AND SUB-LETHAL EFFECTS .......... ... .. ... .. ... 4-22
431 Indirect Effects . ... ... 4-23

432 Sub-letha Effects .. ... 4-24



4.4

4.5

UNCERTAINTIESASSOCIATED WITH INTRA-SPECIES

NV ARIABILITY 4-27
4.4.1 The Probit Model and other Dose-Response Models .. ........... 4-28
4.4.2 Sources of Intra-species Variability and Their Relative

Magnitudes . . ... .o 4-30

4.4.2.1 An Evaluation of Sources of Variability for Laboratory
Toxicity Measurements ..., 4-30
4.4.2.2 Factors Influencing Instra-species Variability ............. 4-33
4.4.3 Use of Dose-Response Information in Risk Assessment . .......... 4-36
4.4.3.1 Extrapolation of LD5's or Other Low-response Dose Levels . 4-37
4.4.3.2 Generating Random Mortality Decisions .. .............. 4-38
4.4.3.3 Statistical Confidenceinthe Dose-Response ............. 4-40
INTERSPECIFIC METHODS AND VARIABILITY . ............ ..., 4-47
451 IntroduCtion ... ...t 4-47

45.2 Analysisof Phylogenetic Relationships among Species Sensitivity

Data .. 4-49
45.3 Derivation of Extrapolation Factorsto Predict a Pre-determined

Protection Level . ... ... .. . . 4-52

4.5.3.1 An Introduction to Distribution-based Approaches to

Interspecific Variability ............ ... ... ... .. ... 4-52

4.5.3.2 Method developed by Luttik and Aldenberg (1995) ....... 4-55

4.5.3.3 Method Developed by Baril and Mineau (1996) .. ......... 4-56
45.4 Derivation of Extrapolation Factors to Predict Distribution

Parameters . ........ . 4-61
455 Pointsof Caution About TheseMethods . . .................... 4-63
45.6 Example of the Use of Extrapolation Factors to Predict the 5" Percentile of

the Species Senditivity Distribution . ......... ... ... ... .. .... 4-65
457 SopeoftheDoseresponse Curve ...........c.oieiiinninnnn.. 4-70
458 Choiceof TEStSPECIES ... .ot 4-71



5.0

6.0

459 Extrapolation Across Speciesfor Other Tests .................. 4-72

4.6 OUTPUT OF EFFECTS ASSESSMENT . ... ... .. it 4-75
RISK ASSESSMENT METHODOLOGY ... ... e 51
5.1 OBJECTIVEOFRISK ASSESSMENT .. ... ..t 51
5.2 OVERVIEW OF RISK ASSESSMENT METHODS . .................. 5-2
5.3 POINT ESTIMATE QUOTIENTS(METHOD 1) .................... 5-10
5.4 COMPARISON OF EXPOSURE DISTRIBUTION AND
POINT ESTIMATE FOR EFFECTS(METHOD 2) ... ................ 5-12
5.5 COMPARISON OF EXPOSURE AND EFFECTS DISTRIBUTIONS
(METHOD 3) ..ot e e e e 5-14
5.6 DISTRIBUTION-BASED QUOTIENTS(METHOD 4) ............... 5-19
5.7 INTEGRATED EXPOSURE AND EFFECTS DISTRIBUTIONS
(METHOD 5) ..ottt 5-23
5.7.1 Dose-Response Approach . ... 5-25
5.7.2 Survivorship (or time-to-event) Models . . . ............. ... ... 5-36
5.8 MECHANISTIC (PROCESS) MODEL S FOR POPULATION EFFECTS
(METHOD B) ...t e 5-36
581 Ageclassstructured .. ... .. 5-37
582 Stageandsizestructured............ ... 5-38
5.8.3 Compositeageand sizestructured ................ ... ....... 5-38
584 Individual-based ......... ... ... 5-39
5.8.5 Spatially structured populations .............. . ... ... 5-40
5.9 FURTHER TESTING AND SELECTION OF METHODS ............. 5-44
LEVELS OF REFINEMENT FOR THE ASSESSMENT PROCESS ............ 6-1
6.1 OBJIECTIVE .. 6-1
6.2 LEVELS OF REFINEMENT FOR THE ASSESSMENT COMPONENTS .. 6-1
6.3 LEVELS OF REFINEMENT FOR THE OVERALL ASSESSMENT . ..... 6-5
6.4 LEVELSVERSUSTIERS. . . ... e 6-7
6.5 HOW FARTO REFINE THE ASSESSMENT ? . ... ... ... ... . . ... 6-8

Xi



7.0

6.6 WHICH PARTSOF THE ASSESSMENT TOREFINE? ............... 6-9
6.7 MAGNITUDE AND PROBABILITY OFEFFECTS . ................. 6-13
6.8 PRACTICAL IMPLICATIONS . ... e 6-19
6.9 DEVELOPMENT OF STANDARDIZED PROCEDURES ............. 6-20
RECOMMENDATIONS . . .. e 7-1
7.1 OVERVIEW . 7-1
7.1.1 The ECOFRAM Process -- Charge, Scope, and Limitations ........ 7-1

7.1.2 TheValue of Probabilistic Ecological Risk Assessment — Key Concepts
fromECOFRAM ... . 7-2
7.1.3 The Need for Further Development and Vaidation ............... 7-5
7.2 EXPOSURE ASSESSMENT AND CHARACTERIZATION ............ 7-6
721 Near TemMACHVILIES . . ... o e 7-6
7.2.1.1 Improved Test Designsor New Tests . .................. 7-6
7.2.1.2 Model Development, Validation, or New Models . ......... 7-6
7.2.1.3 Analyses of Existing Data or New Research Projects . . . .. . .. 7-7
722 Medium TermACHVItIES .. .. ... 7-9
7.2.2.1 Improved Test Designsor New Tests . .................. 7-9
7.2.2.2 Model Development, Validation, or New Models .......... 7-9
7.2.2.3 Analyses of Existing Data or New Research Projects . . . .. .. 7-10
723 Long TermACtVILIES ... .. e 7-10
7.2.3.1 Improved Test Designsor New Tests . ................. 7-10
7.2.3.2 Model Development, Validation, or New Models ......... 7-10
7.2.3.3 Analyses of Existing Data or New Research Projects . . . .. .. 7-10
7.3 EFFECTS ASSESSMENT AND CHARACTERIZATION ............. 7-11
7.3 1 Near TermACHVILIES . . ... o 7-11
7.3.1.1 Improved Test Designsor New Tests . ................. 7-11
7.3.1.2 Analysesof Existing Data or New Research Projects . . . ... 7-12
7.32 MediumTermACtVItieS .. ... 7-12
7.3.2.1 Improved Test Designsor New Tests . ................. 7-12

Xii



8.0
9.0

7.3.2.2 Model Development, Validation, or New Models ......... 7-14

7.3.2.3 Analyses of Existing Data or New Research Projects . . . . . .. 7-14

7.3.3 Long TermACtVItIES ... .. i 7-15

1.4 RISK ASSESSMENT . ... e e e 7-15
741 Near TeMACHVITIES . . ..ot 7-15

742 Medium TermACHVILIES . ... . oo 7-15

7.5 PROCESS FOR CARRYING OUT THE RECOMMENDATIONS ... .... 7-15
7.6 CONCLUSIONS ... e e e e e e 7-17
7.6.1 Summary of Recommendations . . ............. ... ... ... 7-17

7.6.2 Evauation of How the Workgroup FulfilledtheCharge .......... 7-19
REFERENCES . . ... e e 8-1
APPENDICES 9.0 . ... e Al-1l
APPENDIX AL . Al-1l
APPENDIX A .. e e A2-1
APPENDIX A3 . e A3-1
APPENDIX Bl ... e B1l-1
APPENDIX B2 .. e B2-1
APPENDIX B3 .. e B3-1
APPENDIX Gl .. e e Cil-1
APPENDIX G . C2-1
APPENDIX  C3 . e e C3-1
APPENDIX  CA . C4-1
APPENDIX G5 . C5-1
APPENDIX  CB ... e e e C6-1
APPENDIX 7 . e e Cr-1
APPENDIX  C8 ... e C8-1
APPENDIX GO . e Co-1
APPENDIX  Cl0 ... e e C10-1
APPENDIX Dl ... e Di1-1



APPENDIX E1

Xiv



© 00 N oo o1 b~ W

10
11
12
13

14
15
16
17
18
19
20
21

22
23
24
25

1.0 INTRODUCTION

1.1 BACKGROUND

In May 1996, the U.S. Environmental Protection Agency's (EPA) Office of Pesticide Programs
(OPP) presented two ecological risk assessment case studies to the FIFRA Scientific Advisory
Panel (SAP) for comment on its methods and procedures. While recognizing and generally
reaffirming the utility of the current ecological assessment process for screening purposes, the
Panel offered a number of suggestions for improving the process. Foremost among the
suggestions was that OPP move beyond the present single point deterministic assessment process
and devel op the tools and methodol ogies necessary to do probabilistic assessments of risk. Such
assessments would address the magnitude of the expected impact as well as the uncertainty and
variation involved in the estimates. In addition, the SAP identified several areasin the
assessments that could be expanded to present a more compl ete perspective or characterization of

the potential environmental risk for the pesticides examined.

Following the recommendations of the SAP and building on previous efforts, the Environmental
Fate and Effects Division (EFED) within OPP began a new initiative in 1997 to revise the
assessment process. The purpose of thisinitiative is to strengthen the core el ements of the
ecological assessment process by identifying, developing, and validating tools and methodol ogies
to conduct probabilistic assessments and to improve risk characterization. These methodologies
are intended for use by OPP to evaluate the effects of pesticides on terrestrial and aguatic species.
Thus, they need to be developed within the context of the FIFRA regulatory framework and

consider OPP resource and time constraints.

In recognition of the importance of involving stakeholders in redesigning its ecological
assessment process, OPP initiated several channels for external involvement. Thisled to the
formation of the Ecological Committee on FIFRA Risk Assessment Methods (ECOFRAM), who

was charged with conducting the primary review of the current assessment process and
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developing new tools and methodologies for aquatic and terrestrial assessments. ECOFRAM is
comprised of scientific experts drawn from government agencies, academia, contract laboratories,
environmental advocacy groups, and industry. Participants were selected based on expertise,
affiliation, and availability to ensure that the appropriate disciplines were represented along with a

cross-section of affiliations.

ECOFRAM was divided into Aquatic and Terrestrial Workgroups. This report reflects the work
of ECOFRAM's Terrestrial Workgroup, which has been developing methods and tools that could
be used for revising the assessment process for evaluating pesticide impacts on terrestrial species.

The report aso identifies research areas and validation needs.

1.2 THE CHARGE TO ECOFRAM

The Charge to ECOFRAM, which outlines the scope of the initiative, was as follows:

"The ultimate goal of thisinitiative is to develop and validate risk assessment tools
and processes that address increasing levels of biological organization (e.g.,
individuals, populations, communities, ecosystems), accounting for direct and
indirect effects that pesticides may cause. Achieving this goal may require more
than the limited resources and time available for the initial effort. Therefore, work
groups will first address direct acute and chronic effects of pesticides on
individuals and populations of high-risk species. The species considered first will
be terrestrial vertebrates and agquatic vertebrates and invertebrates. Terrestria
invertebrates and terrestrial and aguatic plant species will be addressed

subsequently, as resources permit.

Work groups are charged with developing a process and tools for predicting the
magnitude and probabilities of adverse effects to non-target aquatic and terrestrial

species resulting from the introduction of pesticides into their environment. The

1-2
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methods devel oped should consist of standardized procedures that integrate
estimates of pesticide exposure with knowledge about the potential adverse
effects. The methods should account for sources of uncertainty. In addition, the
methods must be devel oped within the context of the FIFRA regulatory
perspective and follow the outline provided by the Framework for Ecological Risk
Assessment (U.S. EPA, 1992).

The tools that are developed need to have reasonable scientific certainty and be
capable of acceptable validation within a reasonable time frame. Nevertheless,
model development, as a primary tool, may be limited by aless- than-complete
understanding of ecologica systems and by the ways that various direct and
indirect effects of pesticides may be expressed at higher levels of biological
organization. Probabilistic techniques developed should use existing fate and
effects data where possible. However, in developing new methodol ogies and
improving risk estimates, it may be necessary to modify or discontinue current

tests or to develop new ones.

Methods devel oped for risk estimates should reflect a solid foundation in
environmental toxicology and account for species sengitivity, environmental fate
(including the transport, degradation, and accumulation of pesticidesin the
environment), and other variables. The type of pesticide formulation, application
techniques, habitat types (e.g., estuary, pond, stream, field, forest), and species
associated with these habitats need to be considered. The trandation of residue
estimates into exposure estimates and routes of exposure should be incorporated

into the methodology.

Methods should be specific enough to allow different risk assessors supplied with
the same information to estimate similar values of risk. The rationale for the

choice of scenarios needsto be clearly stated. Assumptions and extrapol ations

1-3
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need to be specified and explained so the significance of the ecological risk
estimates provided by the methods is easily understood.

Finally, the workgroups are asked to define any additional developmental or
validation efforts that are needed for the probabilistic methods developed. This will
provide afirm scientific basis for use of the risk estimates by environmental

decision makers."

1.3 FOCUSOF THE REPORT

The Terrestrial Workgroup met approximately monthly for a year and a half to take up the Charge
to ECOFRAM. They began their deliberations by discussing the focus described by the Charge.
They agreed to first address direct acute and chronic effects of pesticides to birds and mammals.
The Workgroup also discussed the importance of indirect effects and concluded that they are a
significant issue. However, assessments of direct toxicity drive the current pesticide registration
process and are more tractable than addressing indirect effects. Also, it was generaly felt that
indirect effects were too complex to adequately address within the time frame of ECOFRAM. As
aresult, the Workgroup concluded that a focus on direct acute and chronic effects to birds and

mammals was appropriate.

The Terrestrial Workgroup also discussed the consideration of species other than or in addition to
birds and mammals. However, the larger databases of toxicity and life history information for
birds and mammals make them more amenable for developing a new process for risk assessment

than other species. Again, the Workgroup concluded that the focus as directed in the Charge was
appropriate.

14 ROLE OF THE NEW EPA GUIDELINES

The Terrestrial Workgroup, as specified in the Charge, followed the outline provided by the

1-4
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Framework for Ecological Risk Assessment (U.S. EPA 1992) for devel oping ecological risk
assessments. The Framework was later expanded and replaced by Guidelines for Ecological Risk
Assessment (U.S. EPA 1998).

The Guidelines for Ecological Risk Assessment base the ecological risk assessment process on
integrating two major elements, characterization of exposure and characterization of effects
(toxicity). These elements provide the focus for conducting the three phases of risk assessment,
which are described in Sections 1.4.1 - 1.4.3.

1.4.1 Problem Formulation

Problem formulation is the first phase of the ecological risk assessment process. In problem
formulation, the purpose for the assessment is articulated, the problem is defined, and a plan for
analyzing and characterizing risk is determined. This phase begins by addressing the available
information on stressor (chemical), sources of the stressor, and the characteristics of the non-
target wildlife and ecosystem at risk. This results in assessment endpoints and conceptual models,

which are used to complete an analysis plan, the final step in problem formulation.

1.4.2 Analysisof Exposureand Effects (Toxicity)

The second phase of the assessment processis analysis of exposure and effects (toxicity). This
phase provides an exposure characterization, which includes estimates of dose and/or dose
distributions. This phase also provides an effects (toxicity) characterization, which includes the
determination of dose-response factors, such as the LD50 or EC50 and dose-response slope,

and/or distributions of dose-response factors.

Theinitia step in this phase is identifying the strengths and limitations of the data on exposure,
effects, the ecosystem, and animal life history. Data are then analyzed to characterize the nature
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of potential or actual exposure and the ecological response under the circumstances defined in

the conceptual model.

1.4.3 Risk Characterization

The third phase is risk characterization. This phase integrates the exposure and effects
characterizations through the risk estimation process. It includes a summary of assumptions,
scientific uncertainties, and the strengths and limitations of the analyses. Output of the risk
characterization phase include the results of integrating the exposure and effects characterizations,
discussed the ecological effects that are predicted, and the uncertainties and lines of evidence that

were involved.

1.5. TERRESTRIAL WORKGROUP'SAPPROACH TO ADDRESSING THE
CHARGE

Using the above outline as specified in the Charge, the Workgroup developed the following steps

to address the tools, methods, and data needs for conducting probabilistic assessments for

pesticides:

. Defined and devel oped assessment guestions (endpoints) and conceptual models.

. Defined the scope of the initial model development given time and resource constraints.
. | dentified major variables that influence pesticide exposure and effects to non-target

terrestrial species.

. Developed the structure of the risk assessment models.
. Defined distributions for these variables or how to estimate them.
. Defined the uncertainties associated with avail able data and additional data needed to

support methods identified or were being devel oped.
. Tested the models using three of four case studies scenarios.
. Defined additional developmental and validation work required.
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. Developed suggestions on how these new tools and models could be incorporated into the

pesticide registration assessment process.

Asthe Terrestrial Workgroup began to move through these steps, they realized that not enough
time or resources were available to adequately address al of them. While most steps were
addressed and are discussed in this report, it became obvious that developing probabilistic models
and refining them to a stage that could be applied to case studies would not be feasible. They
were a so unable to devel op the associated case studies and thus limited their efforts to developing
examples of concepts identified and how they could be applied. It should be noted that Chapter 7
provides recommendations regarding the steps that were not fully developed. It also provides key
concepts and conclusions based on the discussions of the steps that were fully addressed.

In this report, the Terrestrial Workgroup presents their findings based on their discussions as they
worked through this approach. It proposes a sequential organization to probabilistic assessments,
includes relatively simple assessments that may be broadly applicable, and identifies more complex
case-specific assessments designed for the unique features of each pesticide use scenario. Each

probabilistic approach is demonstrated through the use of examples.

1.6 ORGANIZATION OF REPORT

The report begins with this introductory chapter, which provides background information,
including a discussion of the charge to ECOFRAM, the focus of the report, the role of the EPA
Guidelines, and the Terrestrial Workgroup's approach to addressing the Charge. It also provides
abrief overview on probabilistic assessments and other assessment methods and the basic model

structure for probabilistic assessments.

Chapters 2 - 5 follow the basic elements of EPA's guidelines as described in sections 1.4. Chapter

2 presents problem formulation, including a discussion of assessment endpoints,
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conceptual models, questions often posed by risk managers, and additional considerations.
Chapters 3 and 4 present the findings of the Terrestrial Workgroup regarding Exposure and
Effects, respectively. Chapter 3 provides an introduction and a discussion of the factors affecting
exposure pathways. It also presents discussions regarding the dose resulting from various routes
of exposure. Chapter 4 discusses the scope of the effects assessment, the suitability of current
toxicity tests, indirect and sub-lethal effects, and provides a discussion of intra- and interspecies

methods and variability.

Risk assessment methods are presented in Chapter 5. The focus of this chapter isto present

various methods for integrating the exposure and effects characterization into estimates of risk.

Chapter 6 provides levels of refinement for the assessment process and discusses ways to
implement probabilistic risk assessments into the pesticide registration process. Chapter 7
provides the Terrestrial Workgroup's recommendations and conclusions. This includes
recommendations for further devel opment of approaches, data needs, and research needs to
address the limitations in the understanding of the effects of pesticides in the environment.

The report concludes with references and the appendices in Chapter 8 and 9, respectively.

1.7 ABRIEFOVERVIEW ON PROBABILISTICECOLOGICAL RISK ASSESSMENT

1.7.1 Why Do A Probabilistic Ecological Risk Assessment?

The SAP stated that the methodol ogies and specific endpoints used by OPP have severa
limitations in relation to their utility in risk assessment. Consequently, they recommended that
OPP develop the necessary databases and methodologies to conduct probabilistic assessments of
risk.
"OPP believes that its current procedures for ecological risk assessment generally provide
a cautious and protective evaluation of the potential for widespread damage to non-target

fish and animals from use of pesticides according to label directions. However, while
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these current procedures can serve as a screen to identify possible environmental damage,
they often provide less information on the likelihood of damage and the uncertainty in

such estimates as is desirable in balancing risks and benefits as required under FIFRA" (US
EPA 1997).

The current use of deterministic quotients provides an assessment that the estimated risk, in the
form of an index value, would be less than or greater than a defined level of concern. However,
the index value provides no information about the probability of an unacceptable risk or the
magnitude of risk. Although a quotient value of 10 is several times higher than most numerical
levels of concern, the relationship between risk quotient values and the risk to the environment is
unknown, so it is not possible to determine the significance of an index value of 10. Nor isthere
sufficient understanding to compare the relative risk between quotient values of 10 and 50.
Theoretically, avalue of 50 means greater risk than avalue of 10, but it is not possible to
determineif the real risk between the two quotient valuesis substantial or negligible. Addressing
issues of the probability or magnitude of risk requires alternative approaches that incorporate

what we know about measured or estimated parameters and their associated uncertainty.

Suter (1993) states that the

"uses of probabilistic analysis can help to clarify the relationship between decision making
and uncertainty. They can be used to justify a particular degree of conservatism in the
face of uncertainty or can be used to justify making additional measurements or conduct
additional tests to reduce uncertainty. ... Thus this approach provides a means of
determining the need for more data, and for prioritizing data needs. One would do the
research that would do the most to decrease the total uncertainty within the restraints of
time and money. In addition, these curves [probability density functions| make clear the
advantage of estimating the expected effects and associated uncertainties, rather than

using worst case assumptions or arbitrary safety factors. Because there is no objective
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scale of badness or safety, there is no objective way to compare the defensibility of safety factors
or to justify how bad a worst-case must be. Probabilistic analysis provides a means of comparing

assumptions, models, and data put forth by the parties in an environmental dispute.”

Consequently, probabilistic assessments provide a means to go beyond ambiguous qualitative
narrative assessments to more explicitly quantify what is quantifiable and to state specifically the

assumptions made in the assessment.

1.7.2 What isProbabilistic Ecological Risk Assessment?

Thereis no unified term that is used to designate assessments that quantitatively characterize the
uncertain variables in estimates of ecological effects. Various terms are used in the literature to
delineate this type of an assessment. While ECOFRAM used the term "Probabilistic Risk
Assessment”, as mentioned in the Charge, other terms can be used to identify similar types of
assessments. These include risk assessment (Suter 1993), quantitative policy analysis (Morgan
and Henrion 1992), quantitative risk analysis (Vose 1996), stochastic modeling (Ott 1995),
probabilistic analysis (EPA, 1997), and Monte Carlo Analysis (EPA 1997). Theseterms al are
used to delineate assessments that predict the magnitude and probability of effects, where

probability is the characterization, quantitatively, of the uncertain variables.

Probabilistic risk assessments are not new. They have been performed to predict the probability
of nuclear accidents (Covello and Merkhofer 1993), traffic accidents (Fischhoff et al. 1981),
wesather events, food safety (Covello and Merkhofer 1993), and risk of acidification of lakes
(Linthurst et a. 1986, Baker and Harvey 1984). However, there is a growing awareness among
scientists and decision makers of the value of integrating these uncertainties into the
characterization of ecological risks from the use of pesticides. The proliferation of user-friendly

software packages that can incorporate parameter variability and uncertainty has greatly
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increased the number of scientists with direct access to the tools for conducting probabilistic

assessments.

The basis for probabilistic risk assessment is relatively simple. The major uncertain variables that
influence the risk of concern are identified and their parameters (e.g., distribution type, mean,
variance, and correlation to other uncertain variables) are defined or estimated. Using the laws of
mathematical statistics, the uncertain variables are combined to estimate the parameters of the
distribution of the risk of concern. For simple additive or multiplicative models the math is
relatively straightforward. However, the math can quickly become relatively complex and
tedious. With the advent of powerful desktop computers, commercial software packages have
been developed that can perform the mathematical operations through Monte Carlo sampling of
the input variable distributions to estimate the output distribution of risk with relative ease. The
underlying theory of Monte Carlo sampling is grounded in the frequency interpretation of

statistics. In Monte Carlo methods, samples are randomly drawn from a defined distribution.

1.7.3 Uncertainty and Probabilistic Risk Assessment

The three major types of uncertainty variables addressed in current risk assessment literature are
natural variability, lack of knowledge, and model error. Natural variability is defined as the true
heterogeneity or natural variation in the risk estimate and may be better defined though increased
sampling to approach the true variability (bounds) in the population. Uncertainty is defined as
ignorance or lack of knowledge about the estimate of risk due to absence of data or incomplete
knowledge of important variables or their relationships. Uncertainty may be reduced through
further research. Model error results from the chosen model failing to adequately mimic the
system in question. In practice, it is often difficult to completely separate the 3 major types of

uncertainty, because they are somewhat inter-related.

Several techniques have been developed to address the absence of knowledge in assessing risk.
While the Terrestrial ECOFRAM Workgroup did not discuss these techniques in depth due to
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time limitations, they were briefly discussed and will need further attention as the Agency moves
to probabilistic risk assessments of pesticides. (See Chapter 7.) Briefly, two of the more common
methods employed entail the use of conservative models or subjective judgement. While not
without limitations, they provide methods which can be used to provide a“best estimate of risk”
given the state of knowledge and can provide separate estimates of the uncertainty from natural

variability and lack of knowledge.

The use of conservative models to represent reasonable worst case scenarios (e.g., 100% of diet
contaminated, residues levels measured immediately after application) is an approach that has
been used to compensate for the absence of empirical information. An alternative is to use
conservative estimates of input distributions. Maximum entropy inference (MEI) uses aformal set
of rules to specify input distributions according to the amount of information available (Lee and
Wright, 1964). This maximizes the uncertainty in input distributions that can be assigned based on
the lack of knowledge. The MEI approach has several advantages compared to subjective
judgements by individuals. It avoids human bias and helps mitigate against unfounded confidence
in our predictive skills (Moore 1996). These approaches could be viewed as a reasonable way to

minimize type two error, that is, missing effects that are occurring or could occur.

Subjective or Bayesian statistical methods incorporate the absence of knowledge into risk
assessment through subjective judgement. Actually, the probability theory used for the Bayesian
approach isidentical to the classical approach, but the underlying philosophy is different. Warren-
Hicks and Butcher (1996) point that out the major difference between a Bayesian and classical
approach is the concept of probability employed. For the classical case, probability is regarded as
representing the frequency with which an event would occur in repeated trials. For the Bayesian
case, probability is regarded as representing a degree of reasonable belief based on existing
information. Bayesians do not require assumptions about repeated trials to make inferences about
output, but rather the inferences are made based on the available data. This information takes on

two forms: sample information and prior information. Each must be available for the Bayesian
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paradigm to be implemented and probability statements about the risk are made based only on

these two sets of information.

Numerous publications are available which discuss extensively the approaches to developing
probabilistic risk assessments and potential sources of errors and biases that can be introduced
into the analysis (Vose 1996, Morgan and Henrion 1990, Hammerdey and Handscomb 1964,
Kloek and Van Dijk 1978, Hammerdey and Mortan 1956, Wilson 1984). The reader is referred to

these publications for an in-depth review.

It is assumed that probabilistic assessments will reduce uncertainty in decision-making by
interactively refining our models to reflect new data and understanding of ecological relationships.
We may thus achieve greater certainty that our model predictions are a reasonable reflection of
field responses. However, by acknowledging the natural variation in the numerous measures of
exposure and effects rather than using worst-case assumptions, model predictions of risk will
reflect the tremendous variability in risks to individuals that exist in terrestrial systems.
Consequently, as we reduce the uncertainty in our model(s) of the environment, we are
simultaneoudy and increasingly acknowledging the variation in risks at the level of the individual

within a population or a landscape.

1.7.4 EPA Guidance on Probabilistic Risk Assessment

The U.S. Environmenta Protection Agency has aso devel oped guidance on the basic principles of
probabilistic risk assessment, which includes 16 guiding principles for developing probabilistic risk
assessments (Appendix Al). These principles help to ensure good scientific practices when
developing these type of assessments (US EPA 1997). Although al 16 principles are important,

two warrant special attention.

The first principle is that the assessor needs to pay particular attention to the difficulty of
developing and justifying input distributions. While the limitations induced by these components
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of developing probabilistic risk assessments are generally acknowledged, often their consequences

are given insufficient attention (Ferson 1995).

Mis-specification of the sampling distribution can drastically change the shape of the out put
distributions. In probabilistic risk assessments, the distribution from which the samples are drawn
is assumed to be the true distribution or, when information is scant or nonexistent, a distribution
of the parameter of interest is assumed. The degree that the sample distribution or the assumed
distribution differs from the true distribution can significantly influence the results, particularly if
the mis-specified distribution occurs for a sensitive parameter in a multi-parameter model. Before
attempting to fit probability distributions to a set of observed data, the properties of the observed
data should be considered. Vose (1996) points out,

"The properties of the distribution or distributions chosen to be fitted to the data should
match those of the variables of interest. Software like BestFit has made fitting distributions
to data very easy and removes the need for any in-depth statistical knowledge. These
products are generaly extremely useful but, through their automation and ease of use,

inadvertently encourage the user to attempt fits to wholly inappropriate distributions.”

Vose (1996) as well as the other reference text above on probabilistic risk assessment review in-
depth various statistical methods for fitting distribution to data.

While there are numerous references for estimating distributions from empirical data, these
standard approaches are of limited value when few dataexist. Where data are severely limited,
severa methods have been advanced to define the “best” estimate of the distribution in question.
These include (1) employing maximum entropy criteria to select distributions from a priori
constraints (Lee and Wright 1994), (2) focusing on extreme value distributions when the tails are
of interest (Lambert et a. 1964), (3) gathering empirically fitted distributions (Haimes et al.
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1994), and (4) using default distributions such as the triangular or exponentia (Bartley et al.
1983, Finley et al. 1994, Haimes et al. 1994). Ferson (1995) points out, however, that

“in the absence of a complete empirical base, al of these methods for selecting input
distributions require assumptions that cannot be justified by appeal to evidence and
therefore may be false. These unsubstantiated assumptions can make a difference in the
results. As Bukowski et a (1995) showed, the choice about distribution shape can have a
sizable effect on therisk analysis, again especiadly in the tails.”

Ferson (1995) believes that this can be overcome using probability bounds and reviews some
computational methods to estimate probability bounds dependent on the amount of empirical data
available. He further suggests that in al cases, the bounds will enclose the true probability
distributions and provide a conservative expression of the potential risk. Whileit is beyond the
scope of this report to review these methods in depth, assessors should become familiar with these

various methods for estimating distribution shapes and their limitations.

The second guiding principle that needs to be emphasized is falsely assuming statistical
independence and/or inadequately accounting for correlation between input variables. In the
absence of understanding or accounting for variable dependancy or correlation, the potential to
underestimate potential effects can be significant. If the assessor assumes that input variables are
independent, principles of probability will lead to the conclusion that the potentia for the
dependent output is a multiple of the input variable, which results in a much lower probability of
occurrence than for any of the input variables. However, if the input variables are dependent, but
highly correlated, the probability of occurrence of the output variable may be close to the
probability of any one of the input variables. If the correlations are small to moderate in strength,
the central tendencies are generally not greatly influenced, but the tails of the distribution can be
extremely sengitive, leading to under estimation of the probability of rare events. This can be
extremely critical in estimates of risk to endangered species or other populations where a

threshold may exist, which if exceeded, result in alow potential for recovery. Not accounting for

1-15



10
11
12
13
14

15

16
17
18
19
20
21
22
23
24
25

correlation, that is assuming independence among input variables, or inadequately accounting for
correlations can lead to such an underestimate and an erroneous conclusion of potential effects.

Also, the type of correlation is critical. As Ferson (1995) points out,

“linear correlation is not the only form of statistical dependence, which is the reason, of
course, that uncorrelatedness does not guarantee independence. And pair wise
independence does not imply mutual independence in the general multi variate case. In
short, there are more things in the heaven of arithmetic on random variables than have

been dreamt of by practicing risk analysts.”

Numerous publications, including the ones referenced above, are available that outline statistical

techniques to determine dependency and correlation of variables and methods to incorporate the
relationships into assessment models. However, these techniques are dependent on the available
data. In cases when the relationships of the variables are not known, these methods and

techniques maybe of little value.

1.7.5 Application of Probabilistic Risk Assessment to Terrestrial Ecotoxicology

Implementation of probabilistic approaches will necessitate several changes in the ecological risk
assessment process for pesticides. The greatest change is the increase in supporting data when
refinements of assessments are needed to reduce the uncertainty in the predicted effects. The point
estimates for toxicity (e.g., LC50, LD50, NOEC) and exposure (e.g., maximum residue
concentration on food types) would be replaced by distributions of values that capture the natural
variability in these parameters and our uncertainty due to measurement error or lack of knowledge
about the biological or chemical system in question. The distributions of exposure would have to
express the variability of parameters both spatially (e.g., heterogeneity of residues throughout
fields) and temporally (e.g., degradation of residues over time). The results of toxicity tests
would be expressed as the complete dose-response relationship, including the slope and
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confidence limits of the relationship. Instead of focusing on the species with the lowest toxicity

values, the measured or estimated distribution of toxicity values among all species would be used.

In expressing the uncertainty in the estimates of exposure and toxicity, there are several additional
parameters that may need to be considered to more completely characterize the risk. For
example, the exposure profile may be refined by information about the specific characteristics of
the pesticide, such as degradation rates, movement in the environment, timing of applications, and
application methods. The effects profile may be refined by information about mode of action,
tempora development of effects, intra- and interspecific differences in toxicity, and behaviora
responses to exposure. The incorporation of additional explanatory parameters is intended to

address the many shortcomings of the simplistic risk quotients.

To better estimate the exposure of wildlife to agricultural pesticides, it will be necessary to
estimate the dose received by individual animals via the various routes of exposure rather than
simply using environmental concentrations (e.g., residues concentrations on food) as a surrogate
for exposure. Consequently, current dietary tests that report a toxicity endpoint in units of
concentration in the food may have to be revised to express test endpoints as the ingested dose

producing a response.

The changes implicit in a probabilistic risk assessment process aso require changesin the
interaction between risk assessors and risk managers. Ultimately, the output of ecological risk
assessments will be presented as the probability that a specific risk may occur or the probability of
a specified magnitude of risk may occur. These probabilities aso will be associated with
guantifiable uncertainties related to stochastic variability, measurement error, and model error that
can be used to assess the level of confidence in the model predictions. A dialogue between risk
assessors and risk managers will be necessary to define specifically the goals of the assessment,
the degree of certainty required for acceptable model output, the conservativeness of model
assumptions, and the magnitude of risk that is acceptable. Whileit isimplicitly understood that

conservative assumptions are part of a screening assessment, at higher tier
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assessments the use of conservative assumptions needs to be clearly identified and their potentia
influence on the assessment acknowledged by both risk assessors and managers. Conservatismis
avalue judgement deliberately introduced to account for uncertainty. It requires the involvement
of risk managers so that risk assessors are not forced to go beyond their role as providers of
assessments. Risk managers need to understand the potential for distortions of the assessment

due to cascading of biases from conservative assumptions.

1.7.6 Potential Problemsin Applying Probabilistic Risk Assessment to Ecological Systems

As suggested, the theory and tools exist to properly specify the structure and input probability
distributions for probabilistic risk assessments. However, the appropriate representations of the
model equationsin relation to the true environmental interactions, the identification of the
appropriate variables, their distribution and the relationship between them remains a serious
challenge in probabilistic ecological risk assessment. Ecological complexities suggest obvious
guestions about the ease with which probabilities can be attached to the immeasurabl e states of
nature likely to occur. The simplest information on chemical specific residuesand fate datain the
environment is often scant, and chemical specific toxicity data on specieslikely to be exposed is
rarely available. Further, life history data on the numerous species potentially at risk from the use
of pesticidesis limited and where available, is confined in space and time. A large proportion of
the discussions in this report address the limitations in the available data and suggest ways to

estimate or collect additional data to reduce the associated uncertainty.

Ideally, to reduce the uncertainty to a minimum, each of the critical variable distributions should
be defined through rigorous scientific investigation. Then through the systematic integration of
these distributions, using appropriate probability theory, a clear delineation of the potential
ecological risk could be made. However, when attempting to assess the possible consequence of a
pesticide application under the infinite conditions in the environment, one cannot enumerate the
complete set of input variables or outcomes nor repeat the experiment often enough to be able to

reasonably estimate the probabilities of each critical input variable or outcome occurring. The
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practical constraints and our less than perfect understanding of natural systems and their
interaction with pesticides suggest that developing probabilistic ecological risk assessments for

pesticides will require a substantial commitment of time and resources.

1.8 OVERVIEW OF METHODS CONSIDERED FOR PERFORMING
ECOLOGICAL PESTICIDE ASSESSMENTSAND INTEGRATION INTO THE
REGULATORY PROCESS

While the Terrestrial ECOFRAM Workgroup mainly addressed assessment methods that
predicted the magnitude and probability of effects, other methods were also discussed. In the
discussions, particularly when addressing the integration of probabilistic tools into the regul atory
process, it became apparent that not every assessment requires or warrants a quantitative estimate
of the magnitude and probability of effects. In some circumstances, a quantitative assessment may
be warranted, but the limitations in data and/or the understanding of the system requires
assumptions which introduce such large uncertainty in the predicted effects that the assessments
would not be scientifically defensible. Therefore, the Workgroup believed there was a need to
explore or at least identify assessment methods that could be used as screening tools when data

limitations imposed restrictions on full probabilistic techniques.

The options for performing ecological pesticide assessments are outlined below in order of

increasing complexity and potentia realism:

. Deterministic quotients (aratio of single values of exposure divided by toxicity),

. Assessment methods that involve a comparison of the exposure distribution to an effects
value (fixed value), and

. Methods that incorporate functions to integrate exposure and effects distributions.

All of these methods have their value and can be applicable to ecological risk assessments. The

simplest methods can be used for screening in order to scope the risk assessment. As additional
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refinements of the assessment are required, the more complex tools and methods can be
implemented to better define the associated uncertainties in the assessment and with additional
data they may be reduced. This approach to the risk assessment process discussed by the
workgroup was labeled “levels of refinement” and Figure 1.8-1 illustrates the general approach.
As previoudly indicated, not all assessments require or warrant a quantitative estimate of the
variability and uncertainty. It may be unnecessary to perform a probabilistic assessment when
screening calculations clearly show the potential for adverse effects are minimal. If the inputs into
the screening calculations have been established based on conservative assumptions, the certainty
of the estimate of minimal risk should be, while maybe not quantified, relatively high. In cases
where the potential for adverse effectsis high long with a high level of certainty, further

assessment may need to be considered.

Leve 1in Figure 1.8-1 involves ssmple models with deterministic inputs and outputs. An
assessment at this level uses conservative assumptions, ignores minor pathways and effects and
utilizes the standard laboratory studies and existing data. However, it should be noted that the
conservative input is established based on distributions or conservative estimations of distributions
for both exposure and effects. Depending upon the potential for effects and the quantity and

quality of data, additional refinements of the assessment may be appropriate.

An assessment at the higher levels of refinement (Levels 2 - 4) uses more complex models with
inputs being the distribution of the major variables and probabilistic output. Additionally,
conservative assumptions are replaced by data and would include an analysis for al significant
pathways and direct effects. The highest level of refinement would involve specia studies or
focused field studies and would be defined through sengitivity analysis of the model to help
determine which variables are contributing to the uncertainty the most. These additional studies
could include toxicity studies on species that may be at the highest risk, foliar dissipation studies
to define residues distributions in space and time more accurately, or wildlife monitoring studies

to better estimate the use of contaminated areas.
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Figure 1.8-1. The concept of Levels of Refinement. The Terrestrial ECOFRAM devel oped the concept of Levels of
Refinement as a means of organizing the variety of tools available for probabilistic risk assessments. The Levels are
not intended to imply arigidly tiered assessment process (see Chapter 6). Instead, there is a continuum between the
lowest and highest Levels and tools from different levels may be used for different parameters, according to the needs
of each assessment.

Level 1 Level 2 Level 3 Level 4
sDeterministic inputs *Probabilistic inputs
*Deterministic outputs *Probabilistic outputs
*Simple models *Complex models
«Conservative assumptions ﬁ «Assumptions replaced by data
eIgnore minor pathways and effects eInclude al significant pathways and effects
*Use only standard studies eInclude specia studies where needed
*Use only existing field data eInclude focussed field studies where needed
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These four levels of refinement are not rigid steps from one level to the next. They are intended to
be aflexible path to refine assessments as needed and may include various levels of refinement of
the variables and assumptions in a single assessment. Chapter 6 address the level of refinement

approach in greater detail.

An important point to understand as assessments are refined is the difference in defining
uncertainty and reducing uncertainty. As the more sophisticated probabilistic methods are used,
the uncertainty in the estimates should become better defined. However, to lower uncertainty
requires additional information or data. For example, the basic toxicity studies, the LC,or the
LD, provide only a point estimate of the toxicity value. The 95% confidence limits that are
usually reported do not give information about the precision of the median lethal dose or
concentration estimate. These limits define an interval such that if al possible replicate 95%
confidence intervals were determined for the sampled individuals under the same conditions, 95%
of them would include the true median lethal dose of the population. The LC,, or the LD, and the
reported confidence limits describe the distribution of the susceptibilities of the individual test
organismsin that test, but gives no indication of the reproducibility or repeatability of thetest. To
obtain the precision of the estimated median letha dose or concentration, replicate tests must be
conducted (Stephan 1977). The number of replicates required is dependent on the precision
wanted and the natural variation in the population for the chemical being tested. For a number of
the variables which are identified, current testing provides only point estimates. Depending on the
sensitivity of the assessment results to a particular variable, further replication may be required to

provide better estimates of the potential effects.

19 BASIC MODEL STRUCTURE FOR PROBABILISTIC RISK ASSESSMENT

The basic structure of the model for estimating the magnitude and probability of pesticide effects
to non-target species can be expressed in the familiar, general equation outlined in the Ecological
Risk Assessment Guidelines:

Risk = f(exposure, toxicity).
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Risk is afunction of exposure and toxicity, and therefore assessments of risk are based on the
characterization of exposure and effects. Whether, the risk assessment is deterministic or
probabilistic, it is based on an exposure and a toxicity (effects) assessment. The mgjor difference
isthat in probabilistic assessments, you define and use distributions of one or more variables
instead of point estimates of the variables and combine the distributions to estimate the probability
and magnitude of effects.

There are alternative, and in some cases more complete, definitions of probabilistic risk
assessments. However, we will define probabilistic assessments as those that estimate the
cumulative percentage probability that the percentage of non-target organisms adversely affected
by pesticides will be (1) less than or equal to or (2) greater than any given percentage of concern.

Probabilistic risk assessments are generated by integrating estimated distributions of dose (which
constitute an exposure assessment) with distributions of experimental dose-response factors

such as the LD50 or EC50 and the dose-response slope (which constitute an effects assessment).
This section contains a brief discussion on how to generate Monte-Carlo based probabilistic risk

assessments as defined previously.
1.9.1 PDFs, Normal and Lognormal PDFs, and CDFs

Distributions for the independent (input) variables or dependent (output) variables for any
equation can be presented as probability density functions (PDFs) and/or as cumulative
distribution functions (CDFs). PDFs are statistical distributions that give the fractional probability
(as afunction of arandom variable x) that any randomly selected value from the distribution will
be equal to x. Examples of two types of PDFs that are commonly used in environmental

assessments are the normal and lognormal distributions (Ott 1995):

05 2
Normal: f (X) = [1/ (2ps XZ) ]exp[ (x- ”L) /2s f] o <X <o (Eg. 1.9-1)
Lognormal: The lognormal distribution is normal for the transformed variable y = In x. For the
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untransformed variable x, the lognormal distribution is given by:

fLN(x):gl/x(Zpsyz)0 gexp (Inx my) 252u 0<x<w  (Eq. 1.9-2)

where
o, = variance for the transformed variable y

K, = mean of the transformed variable'y

Estimates of the variance and the mean of the In transformed variable y (sy2 and m,) can be
computed from estimates of the variance and mean of the untransformed variable x (s? and m,)
with the following equations (PRZM 3 Manual):

- |n[1+ (2 /mf)] (Eq. 1.9-3)

m, = Inm, - 05 |n[1+ (sf /mf)] (Eq. 1.9-4)

Note that even though'y = In x, m, is not equa to In m, and that exp m, = geometric mean of x,

not the arithmetic mean m,.

CDFs are integrals of the PDFs from the lower bound "a" of the PDF to any value of the random
variable v < to the upper bound "b" of the PDF (Ott 1995):

F(v) = Of (x)dx (Eqg. 1.9-5)

where F(v) is the area under the PDF from ato v
Asv —> the upper bound "b" of the distribution, F(v) —> 1 such that the complete area under
the PDF from ato b is given by:

b

Of (X)dx =1 (Eq. 1.9-6)
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where
a = lower bound of the distribution

b = upper bound of the distribution

The cumulative probability that any value x randomly selected from the PDF will be < to some
specific vaue of the random variables v is given by the CDF (Ott 1995):

\

Cumulative Probability(x £ v) = F(v) = Of (x)dx (Eqg. 1.9-7)

From equations 1.9-5 and 1.9-7, it can be seen that the cumulative probability that any value x
randomly selected from the PDF will be greater than some specific value v or be within some

interval c to d are given respectively by (Ott 1995):

Cumulative Probability(x > v) = 1- F(v) (Eq. 1.9-8)

d

Probability(c£ x£ d) = F(v=d)- F(v=c) = Of (x)dx (Eq. 1.9-9)

1.9.2 Monte Carlo Simulations

Equations giving an output (dependent) variable as a mathematical function of other input
(independent) variables (such as equations for estimating pesticide concentrations, dose or effects
in the environment) can be used deterministically or probabilistically. An equation being used
deterministically estimates a single value for the output (dependent) variable based upon single
values being substituted for each of the input (independent) variable in the equation. An equation
being used probabilistically generates a distribution of values for the output variable based upon a

distribution of values being substituted for one or more of the input variables in the equation.
Distributions of values for the output variable of an equation are generally obtained by performing
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Monte Carlo simulations. In Monte Carlo simulations, statistical distributions in the form of
probability density functions are assigned to one or more of the input variables. The computer
algorithm generating estimated values of the output variable is then run numerous (generally
thousands of ) times. For each of the runs, the values of the input variables for which statistical

distributions are assigned are randomly selected from their distributions.

The random selection of input values for each run gives different combinations of input values and
adifferent resulting estimated output value for each run. The thousands of runsresult in a
distribution of estimated output values.

In performing a Monte Carlo simulation, any significant correlations between any of the input
variables must be accounted for to avoid randomly generating nonsensical combinations of vaues
for the input variables for some of the runs that would not actually occur (Vose 1996). The
correlation between any two variablesis generally represented by the magnitude of the linear or
rank order correlation coefficient depending upon the requirements of the Monte Carlo software
being used.

Correlations among all of the input variables can be represented by a correlation matrix in which
element ij is equal to the linear or rank order correlation coefficient between the variable
representing row i and the variable representing column j (Farrar 1997). If the variables are not
correlated, the element is set equal to zero. Computations with the correlation matrix vary
depending upon the software being used and whether linear or rank correlation coefficients are
used. However, in each case, the correlation matrix is used to ensure that correlations between

input variables are maintained during the random selection of input values.

In performing a Monte Carlo ssimulation, the scale and location of the input distributions should be
comparable to the scale and location of the smulation. For example, if the scale and location of
the simulation is lowa, distributions of input variables for the entire United States or for Florida
should not be used.
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1.9.3 Functional Relationships Between Risks, Dose, and Dose-Response Parameters

Risk isafunction of dose and dose-response parameters such as the LD50 or EC50 and the dose-
response slope. Alternatively, risk can be viewed as a function of dose and the sengitivities
(tolerances) of non-target organisms where the sensitivity (tolerance) of an individual organismis
defined as the threshold dose required to cause the organism to exhibit an adverse effect such as
death, growth or reproductive effects. Dose-response functions (equations defined by dose-
response parameters) and sengitivities are closely related because a dose-response function

represents the CDF of a sensitivity PDF (Finney 1962).

Doseis afunction of animal behavior or other animal characteristics (such as food and water
ingestion rates, inhalation rates, diet, and body weight) and of pesticide concentrationsin
environmental media. Pesticide concentrations in environmental media are functions of numerous
parameters including the application rate (which helps to determine the initial concentration),

characteristics of the environmental media (such as plant biomass) and dissipation rate constants.
1.9.4 Basic Stepsin Generating a Probabilistic Risk Assessment

There are 4 basic steps in generating a probabilistic risk assessment for a single non-target species
foraging over a single defined pesticide use area for a specified time interval. The steps can be
repeated for the same species in other use areas or for other species in the same use area.

The steps are discussed below and are graphically presented in Figures 1.9-1 through 1.9-5.

The normal looking PDFs represented in Figures 1.9-1 through 1.9-5 are only for illustrative
purposes and are not meant to imply that al of the distributions are normal. In fact, environmental

data often follow lognormal or other types of skewed distributions (Ott 1995).

1.9.4.1 Step 1: Exposure Assessment
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A dose distribution is generated using a Monte Carlo simulation consisting of numerous individual
runs. Statistical distributions in the form of PDFs are assigned to one or more of the input
variables affecting dose such as food ingestion rate, initial residue concentrations, and dissipation
rate constants. The computer algorithm generating estimated values of the dose is then run
numerous (generally thousands of) times. For each run, the values of the one or more input
variables for which statistical distributions are assigned are randomly selected from their

distributions.

The random selection of input values for each run gives different combinations of input values and
adifferent resulting estimated dose for each run. The thousands of runs result in a distribution of
estimated doses in the form of aPDF. The exposure assessment processis graphically
represented by Figure 1.9-1. Sub-figure A represents one or more input PDFs for dose related
animal characteristics such as the ingestion rate, body weight, and percent diet for different types
of food. Sub-figure B represents one or more input PDFs for concentration related parameters
that are used to estimate concentration versus time series in environmental media such as the
initial concentration, plant biomass, and dissipation rate constants. Sub-figure C represents the

dose PDF output of an exposure assessment

1.9.4.2 Step 2: Effects Assessment

In alaboratory dose-response study, regression is used to estimate the values of dose-response
parameters (such as the LD50 or EC50 and the dose-response slope) that best fit dose-response
data to a dose-response equation (such as the probit) and its associated dose-response curve. The
dose-response equation and its associated dose-response curve give the percentage (or some
transformation of the percentage) of experimental organisms affected as a function of

experimental dose (or some transformation of the dose). Each dose-response experiment will
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Figure 1.9-1Exposure Assessment. Step 1: Probabilistic Exposure Assessment
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generate asingle LD50 or EC50, a single dose-response slope, a single dose-response equation,
and a single dose-response curve. Based on repeated dose-response experiments, distributions of
dose-response parameters such as the LD50 or EC50 and the dose-response slope can be
generated. Depending upon the quantity of dose-response data available, such distributions can be
best fit PDFs, hypothetical PDFs generated by selecting a distribution type based on the literature
and computations of the mean and standard deviation of the available data or empirical non-

parametric distributions.

Recall that the sengitivity (tolerance) of an individual is the threshold dose required for the
organism to exhibit an adverse effect and that a dose-response equation is the CDF for a
sengitivity PDF. Each dose-response equation (defined by a LD50 or EC50 and a slope) has an
associated sensitivity PDF. If the PDFs for dose-response parameters (such as the LD50 or EC50
and the slope) can be assumed to be independent, a set of n random selections from each dose-
response parameter PDF will result in n dose-response equations and n corresponding sensitivity
PDFs.

One or more dose-response equations (each defined by a specific value of the LD50 or EC50 and
the slope) can be used to generate one or more sensitivity (tolerance) PDFs for use in Method A
of Step 3 (section 1.9.4.3) to help generate arisk PDF. Alternatively, one or more dose-response
eguations can be used more directly in Methods B and C of Step 3 to help generate arisk PDF.

The effects assessment process is graphically represented in Figure 1.9-2. Sub-figure A represents
the frequent case where only a single dose-response equation (represented by its associated dose-
response curve) is available. Nevertheless, the single dose-response equation is sufficient to
generate an associated sensitivity (tolerance) PDF as represented by Sub-figure B. Sub-figure C
represents the much less frequent case where multiple dose-response equations (represented by
their associated dose-response curves) are available. In such cases, single PDFs can be generated
for the various dose-response parameters such as the LD50 or EC50 (Sub-figure D) and the dose-

response slope (Sub-figure E).
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Assuming that the PDFs for the LD50 or EC50 and the dose-response slope are independent,
multiple dose-response equations (defined by the LD50 or EC50 and the lope) can be generated
by randomly sampling from both their distributions. Therefore, because a sensitivity (tolerance)
distribution is associated with each dose-response function, multiple sensitivity (tolerance) PDFs
can be generated from the LD50 or EC50 and dose-response slope PDFs as represented by the
arrow going from Sub-figures D and E to Sub-figure F.

1.9.4.3 Step 3: Generation of a Risk PDF
A risk PDF gives the probability of the percent of organisms affected being equa to any given
value of the random variable x as afunction of x. There are various methods for generating a risk

PDF from the outputs of the exposure and effects assessments. Three methods are as follows:

Method A of Generating a Risk PDF: This method uses the dose PDF and one or more sensitivity

PDFs generated in steps 1 and 2, respectively. The simulation consists of N groups of n runs each.
Each run represents a different single individual and resultsin the individual being classified as
adversely affected or not affected. The classification is based upon a comparison of the
individual’ s randomly selected dose (from the dose PDF) to its randomly selected sensitivity (from
asengtivity PDF). Recall that an individual’s sensitivity (tolerance) is the threshold dose
necessary for the organism to exhibit an adverse effect (death, reduced reproduction, reduced
growth, etc.). If anindividua's randomly selected dose (from the dose PDF) is greater than or
equal to its randomly selected sensitivity (from the sensitivity PDF), the individual is classified as
being adversely affected. If an individual's randomly selected dose is less than its randomly
selected sensitivity, the individual is classified as not being adversely affected. In the case where
there are PDFs for the LD50 or EC50 and the slope, the sensitivity distribution for agiven run
(from which the sensitivity is randomly selected) is generated from a dose-response equation
defined by randomly selected values of the LD50 or EC50 and the dlope from their PDFs.
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Figure 1.9-2 Effects Assessment. Step 2: Probabilistic Effects Assessment
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Each set of n runs only generates a single point (percent of organisms adversely affected) on the
risk PDF. However, N sets of n runs each generates N points (percent of organisms adversely
affected) on the risk PDF.

Method A is graphically represented in Figure 1.9-3. Sub-figure A represents the Dose PDF
generated in Step 1. Sub-figure B represents one or more sensitivity PDFs generated from a
single dose-response equation or from multiple dose-response equations derived from the random
selection of LD50 or EC50 and slope values from their PDFs. The arrow to Sub-figure C
represents the generation of the risk PDF (Sub-figure C) from the dose and sensitivity PDFs

Method A is used in an example model (Paret) discussed in Chapter 5 and Appendix A2.

Method B of Generating a Risk PDF: This method uses the dose PDF generated in step 1 and

either a single dose-response equation or the LD50 or EC50 and slope PDFs generated in step 2.
The smulation consists of N groups of n runs each. Each run represents a different single
individual and resultsin the individua being classified as adversely affected or not affected. The
classification is based upon a comparison of the individual’s percent probability of being affected
to arandomly selected percent from the uniform distribution. 1f an individual’s probability of
being affected is greater than or equal to the percent randomly selected from the uniform
distribution, the individual is classified as being adversaly affected. If an individua’s probability of
being affected isless than the percent randomly selected from the uniform distribution, the
individua is classified as not being adversely affected.

The individua’s percent probability of being adversely affected is determined by substituting a
randomly selected dose (from the dose PDF) into the dose-response equation for the given run.
Although the response in a dose-response equation is experimentally expressed as the percent of

organisms adversely affected at a given experimental dosg, it is aso equivalent to the percent
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Figure 1.9-3 Method A Step 3 Generation of a Risk PDF

Method A: Simulation consists of N sets of n runs each.

Each run represents an individual and resultsin classifying the individual as affected or not affected based on a

comparison of the individual’ s randomly selected dose and its randomly selected sensitivity (the threshold dose
for the organism to exhibit an affects).

Each set of n runs generates a single point for the percent organisms affected on the risk PDF. N sets of n runs each
generates N points of the % of organisms affected on the risk PDF.
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Note: The risk PDF depicted byC gives the percent probability that the percent organisms affected is equal to any given
value x on the x axis as afunction of x.

1-34



o 0 b~ W N

\‘

10
11
12
13
14
15
16

17
18
19

20
21
22
23

probability that an organism randomly selected from the population will be affected by the given

dose.

In the case where there are PDFs for the LD50 or EC50 and the slope available, the dose-
response equation for agiven run (in which arandomly selected dose is substituted to determine
the percent probability that the organism will be adversely affected) is defined by randomly
selected values of the LD50 or EC50 and the slope from their PDFs.

Each set of nruns only generates a single point (of percent of organisms adversely affected) on
therisk PDF. However, N sets of n runs each generates N points (of percent of organisms
adversely affected) on the risk PDF.

Method B is graphically represented in Figure 1.9-4. The top row of Sub-figures represent the
case where there is only one dose-response function available. The dose PDF (Sub-figure A)
generated in Step 1, a single dose-response function (Sub-figure B) generated in step 2 are
combined to generate arisk PDF (Sub-figure C). The second row of Sub-figures represent the
case where LD50 or EC50 and slope PDFs are available. The dose PDF (Sub-figure D)
generated in Step 1, the LD50 or EC50 PDF (Sub-figure E) and the slope PDF (Sub-figure F)
generated in step 2 are combined to generate arisk PDF (Sub-figure G).

Method B is used in the Dixon Granule Model (see Appendix A3). Method B should give
identical resultsto those of Method A when applied to the same data using the same number N of

sets and the same number n of runs per set in the ssimulation.

Method C of Generating a Risk PDF: This method uses the dose PDF generated in step 1 and

either a single dose-response function or the LD50 or EC50 and slope PDFs generated in step 2.
The smulation consists of N runs. Each run represents a different subpopulation of an unspecified

large number of organisms. All individuals within the subpopulation are assumed to receive the
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Figure 19-4 Methods B and C Step 3: Generation of A Risk PDF

Method B: Simulation consists of N sets of n runs each.

Each run represents an individual and resultsin classifying the individual as affected or not affected (based on a comparison
of theindividual’s randomly selected percent probability of being affected with arandomly selected Percent from the uniform
distribution).

Each set of n runs generates a single point of the percent of organisms affected on the risk PDF. The N sets of n runs each generates
N points of the % of organisms affected on the risk PDF.
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Method C: Simulation consists of N runs.

Each run represents an unspecified large number of individuals and generates a single percent of organisms affected point on the
risk PDF. N runs generates N% of organisms affected points on the risk PDF. The figures for method C are identical to those for
method B.
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same randomly selected dose and to respond according to the same dose-response function. In
the case where there are PDFs for the LD50 or EC50 and the slope available, the dose-response
equation for agiven run is defined by randomly selected values of the LD50 or EC50 and the
dope from their PDFs.

Each run generates a single point (percent of organisms adversely affected) on therisk PDF. A
total of N runs generates N points (percent of organisms adversely affected) on the risk PDF.

Figure 1.9-4 is applicable to Method B and also applicable to Method C.

Method C is simpler than Methods A and B, because it eliminates the additional step of classifying
each individual as being adversely affected or non-affected. Therefore by using Method C, it is not
necessary for the smulation to consist of N sets of n runs each where each run represents a
different single individual instead of a different single subpopulation. Instead the smulation can

consist of N runs where each run represents a different single subpopulation.

Although method C is simpler than Methods A and B, Method C does not account for the
sampling error associated with small populations like Methods A and B do. Therefore as

discussed in Appendix D1, Method C is probably only applicable to large populations.

1.9.4.4 Step 4: Generation of a Risk CDF and (1 - CDF) from the Risk PDF

The risk PDF generated in Step 3 should be included in arisk assessment to graphically show
the estimated distribution of percentages of organisms adversely affected. However, the
guantitative information a risk PDF providesis of limited value for assessing risk because it gives
the percent probability that the percentage of organisms adversely affected is equal to any given

value x on the x axis as a function of x.

From arisk assessment standpoint, the risk CDF and (1 - risk CDF) provide more useable
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information than the risk PDF. The risk CDF gives the cumulative probability that the percent of
affected organismsis < any given value v on the x axis as afunction of v. The (1 - risk CDF)
function gives the cumulative probability that the percentage of organisms affected is > than any
given value v on the x axis. Therefore, the risk CDF and (1 - risk CDF) should aso be provided
along with the risk PDF.

As previoudly indicated, the CDF is obtained by integrating the PDF from the lower bound of the
PDF to any value of the random variable v < upper bound of the PDF as shown by equation 1.9-7.
Only the simplest PDFs such as the exponentia or triangular can be integrated analytically.
However, tables reflecting numerical integration are available for al standard PDFs. In addition,
off the shelf Monte Carlo software such as @RISK and CRY STAL BALL readily generate CDFs
from their corresponding PDFs.

The differences between a PDF, a CDF, and 1 - CDF are graphically represented in Figure 1.9-5
by Sub-figures A, B, and C, respectively.
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Figure 1.9-5 Step 4 Generate A Risk CDF and (1-Risk CDF)
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Therisk PDF depicted by A gives the percent probability that the percent of organisms affected are equal to any given value x on the
x axis as afunction of x.

Therisk CDF depicted by B gives the cumulative percent probability that the percent of organisms affected isless than or equal to any
given value v on the x axis asafunction of v.

The (1-risk CDF) depicted by C gives the cumulative percent probability that the percent of organisms affected is greater than any
givenvaluev on the x axisas afunction of v.
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20 PROBLEM FORMULATION

21  ASSESSMENT QUESTION (ENDPOINTS) AND CONCEPTUAL MODELS

Theinitia discussions of the Terrestrial Workgroup focused on defining the assessment questions
or endpoints (problem formulation). According to the EPA Guidelines for Ecological Risk
Assessment, assessment endpoints are explicit expressions of the actual environmental value that
isto be protected and is directly related to a characteristic of an ecologica component that may
be affected by exposure to a stressor. There are severa criteriafor selecting assessment
endpoints, which include ecological relevance, susceptibility to the stressor, and the relationship
of the assessment endpoints to management goals and societal value. Each assessment endpoint
must contain two elements, the valued ecological entity and the characteristic of that entity which

is potentially at risk and isimportant to protect.

The Guidelines for Ecological Assessment indicate that assessment endpoints are critical to
problem formulation because they direct the assessment to address management concerns and are
central to conceptual model development. Their relevance is determined by how well they target
susceptible ecological entities. The Guidelines indicate that the ability of assessment endpoints to
support risk management decisions depends on whether they are measurable ecosystem
characteristics that adequately represent management goals. Therefore, the interaction among risk
assessors, risk managers, and other interested parties are extremely important in the devel opment
of the risk assessment. The Guidelines also emphasize that risk assessment and risk management
are two distinct activities. The former is the evaluation of the likelihood of adverse effect, while
the latter is the selection of a course of action in response to an identified risk. Risk management
is based on many factors in addition to the risk assessment, including social, lega, political, and/or

economica considerations.

The scope of the ECOFRAM’ s charge includes the development of probabilistic risk assessment
methods to address the array of pesticide uses now and in the future, including all application
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methods and crops in all environments throughout the United States. Clearly thistask istoo
broad to define specific assessment endpoints for all assessments. The ecological entities concern
in Florida avocado fields treated with foliar insecticides will be different from one in a California
strawberry field treated with a soil fumigant. The risk assessment must be tailored for each
unique Situation. However, the Workgroup believed that generalized assessment endpoints could
be drawn which would be applicable for developing probabilistic methods. These methods should

be adaptable for use in alarge majority of ecological pesticide risk assessments.

In defining the assessment endpoints, the Workgroup, as previoudly indicated, followed the
outline presented in the Guidelines for Ecological Risk Assessments. The Guidelines indicate that
theinitial work in problem formulation includes integration of available information on the
pesticide and its use, identifying the species and ecosystem at risk, and the important variables that
influence exposure and effects. From this information, the guidelines indicate two products are
generated from the problem formulation, assessment endpoints and conceptual models. In
developing the general assessment endpoints and conceptual models, the Workgroup focused on

the following points:

. Risk management questions,
Potential ecological effects of pesticides, and

. The major variables that influence these effects.

22 RISK MANAGEMENT QUESTIONS

In defining the ecological risk assessment questions or endpoints, the Workgroup believed it was
extremely important to consider the questions often posed by risk managers. For the assessment
to be useful in the decision-making process, they must address questions which are both
understood and believed relevant to the regulatory decision by the risk manager. If the questions

addressed in an assessment are not considered relevant or understood by the risk manager, they
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would contribute little to the regulatory decision. Therefore, risk assessments should address
clear, predetermined questions (US EPA 1992).

In 1997 aworkshop was held to begin thisinitiative. It included a presentation by Steve Johnson,
then the Acting Deputy Office Director of OPP, summarizing the questions often posed by risk
managers. In Mr. Johnson's presentation, he identified the questions most often posed by risk

managers.
. What are the effects of concern?
. Why are they of concern?

. What is the magnitude and probability of these effects?
. Will there be population(s) impacts?

. Will the population(s) recover?

. Are the effects seen across different species?

. Will the effects influence the density and diversity of the species?
. How confident are we in our estimate of the effects?

. What models did we use? Have they been validated?

. Are the models widely accepted and scientifically sound?
. How predictive and confident are we in using the models?
. Have you completed a comparative analysis of the potential environmental effects with

similar compounds and/or alternatives?

. |s there any monitoring data? How have you factored the monitoring data into your
assessment?
. If there are unresolved scientific issues, can data be devel oped/studies conducted to

answer these questions?

. How long will it take to conduct the studies and how much will they cost?

. Have other agencies and/or countries assessed the environmental risks?

. How do our assessments compare with those of other agencies and/or countries?

. For each question already mentioned are there any mitigation measures (i.e. buffer zones,
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filter strips, use reduction, etc.) that will eliminate or reduce the calculated risk?
. Can we measure/monitor to determine if our mitigation measures are working?

. In summary, help me put this pesticide and its potential environmental risk in perspective.

In addition, several risk managers participated in the initial ECOFRAM meeting that followed the
workshop. The risk managers emphasized that bright lines could not be specified to guide risk
management decisions involving ecological risk. They also indicated they wanted as complete a
picture as possible of the potential ecological impacts from pesticides, including a clear
understanding of the uncertainties associated with the assessment. They also indicated that they
were interested in estimates of risk at the individual, population, community, and ecosystem
levels, accounting for direct and indirect effects. They acknowledged assessment limitations, but
believed that assessments should provide the most complete picture of ecological riskathat is
scientifically defensible.

23 TYPESOF ECOLOGICAL EFFECTS

In defining the assessment questions (endpoints), the Workgroup discussed the potential risk the
use of pesticides pose to non-target species. These include direct poisoning and death by
ingestion, dermal exposure, and\or inhalation; sub-lethal toxic effects indirectly causing death by
reducing resistance to other environmental stresses such as diseases, weather, or predators,
indirect effects through reduced food resources or alteration of habitat; altered behavior such as
abandonment of nest or young, change in parental care, or reduction in food consumption; or
lowered productivity through fewer eggs laid, reduced litter size, or reduced fertility. These
effects will manifest themselves in wildlife through reduced survival and/or lower reproduction

SUCCESS.

The major emphasis in assessing pesticide impacts to non-target wildlife has been direct lethal
effects. This emphasis has been driven by the type of laboratory toxicity datathat is generally the

most prevaent. While certainly of concern, the workgroup believed limiting the assessment to the
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magnitude of toxicity might miss the more subtle, but equally disruptive sub-lethal or indirect
effects. Not all exposure to pesticides result in the immediate death of an animal. Sub-lethal doses
of some pesticides can lead to changes in behavior, weight loss, impaired ability to reproduce,
inability to avoid predators, and lower tolerance to extreme temperature and other environmental

conditions.

These letha and sub-lethal effects can be further aggravated by the intended effects of the
pesticides through reduced food supplies or atered habitat. Pesticides are intended to alter the
agro- or other ecosystems on which they are used, and therefore by their vary nature, have the
potential to disrupt the system to which they are introduced. Wildlife food sources can be reduced
by both herbicides and insecticide applications and can have significant effects on individual
animals and local populations. Insect-eating animals |ose a portion of their food supply when
insecticides are applied within their home range. Herbicides can reduce availability of both plants
and insects as food supplies. Spraying herbicides on weedy areas destroys insect habitat, |eading
to less abundant and diverse insect populations available as wildlife food sources. Loss of seed
producing weed species from repeated herbicide use results in an additional decline in food

resource and habitat alteration.

As previoudly indicated, the application of pesticides may have indirect effects on non-target
species by altering food supply or habitat integrity. While establishing a causal relationship
between such ecosystem alterations and wildlife effects is difficult to demonstrate, it is clear that
indirect effects are possible because of the interdependency of species within an ecosystem.
Therefore, in defining the assessment endpoints and understanding management goals, the
interrelationships existing among the various components of the ecosystem needsto be

considered.

24 MAJOR VARIABLES

In defining the assessment endpoints and in devel oping conceptua models, major variables that
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influence exposure and effects were identified and discussed. Asindicated in the previous chapter,
the basic structure of the risk assessment model is divided into exposure characterization, effects
characterization, and integration of exposure and effects to generate arisk characterization. The

results are integrated into a characterization of the risk.

The main objective of the exposure part of the risk assessment processis to estimate the
distributions of dose to non-targets. Dose is the amount of pesticide introduced into or taken up
by an organism. The variables that influence dose can be separated into two components, the
chemical/physical component and the biological component. The chemical/physica component of
estimating the dose are the environmental and chemical variables that influence the distribution of
residues levelsin time and space in environmental media (e.g., air water, soil, food). The
biological component addresses the animal behavior attributes that affect the frequency and

intensity of the contact with the various environmental media.

For terrestrial wildlife there are three maor routes of exposure: oral, dermal, and inhaation. The

major chemical/physical variables that influence dose for such exposure routes include:

. The chemical/fate properties of the pesticide,

. Plant/crop characteristic and agricultural properties,
. Meteorological conditions,

. Soil properties, and

. Wildlife water source properties.

For the biological component, the major variables that influence dose for such routes of exposure

IS species dependent and include:

. Food, water, and soil ingestion rates,
. Inhalation rates,
. Dietary diversity,
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. Habitat requirements and spacial movement,
. Direct ingestion rates (granular formulation), and

. Dermal and inhalation absorption rates.

The objective of the effects part of the risk assessment process is to estimate the distributions of
specific effects to non-target species at a given distribution of exposure, the dose-response

relationship. The major variables that influence the response of individua animals includes:

Toxicity (intra- and inter-species variability),

. Age and sex,

. Nutritional status,

. Breeding status,

. Environmental conditions, and

. Duration and extent of exposure.

A number of the variables that influence exposure and effects are discussed in Chapters 3 and 4.
Ways to estimate their distributions and some of the uncertainties associated with these techniques
are also discussed, athough not all are explored in the same depth due to the absence of data
and/or time. Chapter 5 provides a skeleton structure for integrating some of the important
variables to estimate the probability and magnitude of effects. While additional developmental
work will be required to establish working assessment tools and research will be needed to define
or better define the major variables and their influence on effects, these tools and methods

provide a basis for advancing ecological risk assessments of pesticides.

25 CONCEPTUAL MODEL AND ASSESSMENT ENDPOINTS

From the discussions of the potential exposure pathways and effects of pesticides to non-target
species, the identification of the major variables that could influence these exposure and effects,

and the input from the risk managers, the Workgroup developed several conceptual models.

2-7



A W N P

0 N o O

10
11
12
13

14
15
16
17

18
19
20
21
22
23
24

Figure 2.5-1 shows the initial model developed by the Workgroup. It includes alarge number of

potential exposure and effect routes for a variety of organisms under varying combinations of site

and application combinations and as well as consideration of indirect effects. Other conceptual

models were also developed and are presented in following chapters as well as in the appendixes.

Based on the input from the risk managers and the Workgroup discussions of the potential effects

of pesticides to non-target species and the major variables that influence these effects, the

following general list of assessment endpoints were defined for ecological risk assessments of

pesticides:

INDIVIDUAL ENDPOINTS

Survival of valued ecological entity”
Reproduction of valued ecologica entity*
Growth and development of ecological entity
Morbidity of valued ecologica entity

POPULATION LEVEL EFFECTS
Population size of valued ecological entity*
Persistence of valued ecological entity*
Demographics of valued ecological entity

COMMUNITY AND SYSTEM VALUES
Patterns of taxonomic diversity

Patterns of functional diversity

Changes in compositiona integrity
Nutrient cycling

Energetics

(*) Primary endpoints considered by ECOFRAM
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Figure 2.5-1 Generic conceptual model emphasizing exposure characteristics.
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As specified in the Charge and as agreed upon by the mgority of the Workgroup, direct acute and
chronic effects of pesticides to birds and mammals at the individual and population levels would
be addressed first. As previoudy indicated, the focus on direct toxicity does not imply it isthe
more important than other effects. However, the Workgroup felt the assessment of direct toxicity
drives the current pesticide assessment process and is more tractable than addressing other, more
complex interactions. Also, given the time frame of ECOFRAM, the scope of the questions
potential effects addressed needed to be limited. And, in fact, even narrowing the scope to direct

effects a the individual and population levels was believed by some as an ambitious goal.

Similarly, the focus on birds and mammals does not imply they are the most important taxonomic
groups. Asindicated in Chapter 1, the larger databases of toxicity and life history information on
these species was believed to make them more amenable for developing a new process for
pesticide risk assessment. As the process developed, birds received the mgjority of the emphasis
because of the emphasis of current assessment process on avian species and the expertise of
Workgroup members. However, the methods developed could easily be applied to mammalian

and other vertebrate species.

Also, as discussed in later sections, the hope to address population level effects was limited by the
available data. The Workgroup felt that a complete probabilistic assessment of pesticides to non-
target species should consider other groups of non-target vertebrates, invertebrates,
microorganisms, and plants. Thus, they concluded that the developmental effort needs to be
continued beyond thisinitiative and be expanded to include other types of species aswell as
population and overal ecosystem effects. Appendix B1 discusses further the development of the

assessment endpoints.
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2.6 ADDITIONAL CONSIDERATIONS FOR PROBLEM FORMULATION FOR
PESTICIDES

The task of defining specific endpoints for al assessmentsis difficult due to the numerous
conditions and areas where pesticides are used. However, there are some special considerations
that appear appropriate to factor into the problem formulation phase of the assessment for
chemical specific assessments. These include pesticide formulation and use patterns, defining the
agro-ecosystem at risk, identifying the time scale to be considered, and identifying high risk

species in the agro-ecosystem of concern.

2.6.1 Formulation and Use Patterns

All pesticides registered under FIFRA are required to have alabel which provides specific
instructions and information for users. The label also provides important information for the
problem formulation and risk characterization phases. The labdl, for example, identifies the
formulation type. These include liquids (emulsifiable concentrates, suspension concentrates, and
suspo-emulsions), solids (water dispersible granules, wettable powders, water soluble powders,
tablets, granules, pellets, and baits) and others (water soluble bags, gels, pastes, water-based
solutions). It also provides information on use patterns which are defined by the formulation type,
carrier type, crop and region, pest complex, application method and rates, number, and frequency

of application.

Thisinformation is important when considering the risk posed by pesticides. For example, the
application method ( aerial, ground-directed boom spray, in furrow granular application) will
affect route and probability of exposure. The application rates, number and frequency of
applications will contribute to exposure estimates.  Dry applications present a special case for
terrestrial exposure and will require specia risk assessment methodology. (See Chapter 3,

granular applications.) Thus, it isof primary importance to consult the current or proposed label
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for each product to establish potential exposure issues that need to be factored into the problem

formulation.

2.6.2 Defining the Ecosystem at Risk

In the problem formulation phase, it isimportant to define the ecosystem at risk. Meaningful
definitions of any ecosystem are elusive because it is difficult to precisely define their spatial and
temporal scales. To circumvent this difficulty, at least in initial assessments, the term agro-
ecological scenario will be defined as the agricultural land, for example afield orchard, capable of
supporting commercial crop production and its border area. This definition is suggested because it
describes the habitat used by the species at risk and represents the area that will receive the vast
majority of residues by direct application or drift. Operationaly, the individua agricultural field is
the basic spatial unit for pest management because recommendations for treatments will be made
at that spatia level.

The particulars about an agro-ecological scenario that should be considered during problem
formulation include (1) cultural practices, including annual pattern of planting, (2) cultivation and
harvest, (3) irrigation, (4) weed management, and (5) insect management. Each of these facets of
production agriculture can affect risk. Another consideration is that not all of the border will be a
non-crop. Often agricultural fields are adjacent to other agricultural fields. Finaly, the body of
data on pesticide drift indicates that the levels of pesticide residues in the border will be much

lower than the residue levelsin the target crop fields.

When initiating arisk assessment, the assessor would first identify the range of agro-ecological
scenarios for the pesticide. Each scenario would then be characterized in terms of the variables
which affect exposure, either deterministically or probabilisticaly. A risk assessment could then
be conducted separately for each scenario. The results could then be combined, taking into
account the relative frequency of each scenario, to arrive at an overall assessment of the

magnitude and probability of adverse effects for a given region.
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The border area surrounding the specific crop is often a more suitable habitat for terrestrial
vertebrates than the treated field itself. Thisborder comprises awide variety of vegetation types and
associated ecotones surrounding the cultivated field edge. It is possible to derive estimates for the
maximum areas of crop field borders that have potential to contain residues. These depend on the

area of the crop, field size, and field shape.

For the purpose of preliminary or screening-level assessments, it would be preferable to avoid
evaluating the full range of relevant scenarios and to identify which of the relevant scenarios are
most likely to generate a high risk for wildlife. This scenario would be used for screening

pUrpOSes.

Initially, the task of identifying and defining the scenarios will be onerous. However, much of the
information will be generic, applying equally to the assessments for many pesticides used on a
particular crop. Over time, an increasingly comprehensive set of scenarios would be accumulated,
in effect alarge database of 'model environments. If this database is computerized and designed
to sort variables by frequency and geographic distribution, the effort required to select the
scenarios and many of the computations for risk assessment could be strongly facilitated. Such a

database could become the basis for landscape level assessments of risk.

The primary variable in defining an agro-ecological scenario is the type of crop (e.g., corn,
cotton, etc.) or at least a general category of similar crop types (e.g., forage, grain, etc.) because
the crop defines the invertebrate pest problems which in turn determine the pesticide use
scenarios. Another important variable or group of variables is the characteristic of the non-crop
habitat adjacent to, and interspersed among, fields of the crop of interest. In many cases,
identifying the state or local region will establish the general nature and plant species range of the
non-crop habitat that might be associated with the crop. Thisisimportant because these habitats

influence the kinds and numbers of wild species inhabiting the region.
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Geographic regions also generally define meteorological conditions that determine the need for
irrigation. Irrigated crops and habitats in otherwise semi-arid conditions usually support very
different wildlife populations, even populations that would not occur in that location under natural
conditions. Additional important geographic variables include soil type, terrain, and temperature
regime. Four examples of important agro-ecological scenarios and brief discussions of some of

their ecological characteristics that would need to be considered are provided in Appendix B2.

The agro-ecosystem concept developed above is avery useful vehicle for real-world application
of the generalized exposure model developed in Chapter 3. Ecological risk assessment for
pesticides do not often attempt to include arealistic treatment of spatial relationships. The extent
of the growing area of a particular crop, the timing of crop production, the relationship of the
crop agro-ecosystem to other ecosystems, and market share are given limited attention. Explicit
identification of terrestrial vertebrate species at risk are often not attempted, and the relationship

of these species with the agro-ecosystem are often not specified.

The agro-ecosystem concept, with its spatially explicit scale and identification of focal species,
can provide greater understanding of potential impacts of pesticides to non-targets. One can
readily see the value of the concept and how it can be applied in ssmulation models such as those
illustrated in Appendix A2 (e.g., PARET). Yet certain elements of risk, such as the likelihood and
magnitude of effects and the likelihood of recovery, are in some situations inextricably related to
even larger spatio-temporal characteristics of the crop agro-ecosystem in question. These
characteristics may not be appropriate for lower levels of refinement, but may be considered in

certain cases where additional refinements of the assessment are appropriate. (See Chapter 6.)

For the purposes of this section, information on the spatial and temporal relationship of the agro-
ecosystem with other ecosystems or agro-ecosystems would form the basis for a higher level
assessment. In the Guidance Document for Ecological Risk Assessment, such information falls
into the category “Measures of Ecosystem and Receptor Characteristics’. The important

characteristics will depend on the stressor and the crop. These characteristics could include,
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among other things, field size, spatial extent and patchiness, proximity to the same or other crop
agro-ecosystems, proximity to other ecosystems, the composition of the field border, terrestrial
vertebrate species that actually use the crop agroecosystem, timing of crop production, timing of
pesticide application, and so on. Because such information would be relevant only at the higher

levels of refinement, specific information would only be presented on a case-by-case basis.

Technology has advanced and the inclusion of larger spatial and temporal scale information in
ecological risk assessmentsis feasible. These advances include access to satellite imagery, more
powerful computers, Geographica Information Systems, suitable radiotracking equipment, Global
Positioning Systems, and readily available public databases. The challenges in making use of this
information in probabilistic assessments at scales larger than the agro-ecosystem will be to reach
agreement about when such information should be included in an assessment, how the information

will be used, and how the results will be interpreted.

As the discussion above indicates, there have been few ecological risk assessments that have
considered the spatial scale of an agro-ecosystem. However, as pesticide risk assessments are
refined, spatio-temporal data based on the agro-ecosystems of interest need to be factored into

the assessment.

2.6.3 TimeScale

Time-related processes have an important influence on risk. The most familiar example is the
dissipation of residues. Dissipation rates vary widely between pesticides and, if the half-lifeis
short, risk may be greatly reduced. Depuration rates have a critical influence because it isthe
balance between intake, internal metabolism, and depuration which determines whether a
significant internal dose will accumulate. Depuration is rarely explicitly considered in current
assessment procedures, although it occursin toxicity tests and therefore is accounted for
implicitly. The balance between intake and depuration may also be affected by short-term
variations in feeding rate, especialy in situations where animals consume most or al of their daily
requirement in afew minutes or hours (gorging behavior). Also, timescale isimportant for

pesticides exhibiting delayed or cumulative effects (e.g. anticoagulants, organochlorines).
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If risk a assessment is to take account of these types of temporal variation, it is necessary to
express dose per unit of time (i.e. mg pesticide per kg bodyweight per unit time) as a function of
time, and for the time unit (e.g., days, hours, etc.) to be sufficiently small that any significant
peaks and troughs are represented. For chronic assessments, it is a'so necessary to compute total
and average doses over multiple time units, possibly extending over severa daysto weeks. This
isrelatively straightforward provided changes in residues, behavior, and other factors can be
modeled on the appropriate timescale. The difficulty liesin measuring effects on a comparable

timescale. Three options were considered:

Option 1: Base the entire effects assessment around internal dose (body burdens) rather than
external dose. This requires measurement or estimation of depuration, and the measurement or
estimation of effectsin relation to body burden rather than external dose. Substantial research
would be required to develop this approach, and it would probably require new types of routine
testing.

Option 2: Estimate an exposure/time profile first, then use it to customize the exposure profilein
effects tests. This would be impractical for routine use, as the studies would be significantly more
complex and would be relevant only to a very narrow range of scenarios. However, it might be a
useful option in specia cases, for scenarios where temporal variation appeared critical to the

assessment outcome.

Option 3: Identify alimited number of key time scales and carry out matched exposure and
effects assessments for each in turn. This may enable the retention of constant exposure profiles as
areasonable approximation in effects tests, combined with the use of time-weighted averagesin
the exposure assessment when appropriate. Thisis probably the most practical option for routine

use.

Option 3 isthe smplest, providing suitable time scales can be identified. There would be
enormous advantage in using time scales similar to existing effects tests, if possible, to maintain
the usefulness of existing data. In the acute oral test, the dose is administered in one or afew

minutes; in the dietary test birds are exposed for 5 days and in the current avian reproduction

2-16



10
11
12

13

14
15
16
17
18

study for 20 weeks.

Consideration of the existing test time scales, the processes mentioned at the start of this section

and historical examples of pesticide impacts suggests the definition of three time scales as follows:

Short Term: Minutes to hours, representing gorging behavior, diurnal peaksin feeding (e.g. dawn
and dusk), and pesticides which depurate or dissipate very rapidly. Relevant existing effects test,
LD50.

Medium Term: Hours to days, representing scenarios with relatively high exposures over several
days. Also appropriate for acutely toxic pesticides with delayed effects (e.g. rodenticides).
Relevant existing effects test, avian LC50.

Long Term: Daysto weeks, representing long-term, low level exposures. Especially relevant to
pesticides with bioaccumulative effects (e.g. organochlorines). Relevant existing effects test,
avian reproduction study.

These time scales are illustrated conceptualy in Figure 2.6-1.

In the following sections, the three standard time scales defined above are used as the general
basis for both exposure and effects assessments. In screening assessments, exposure will be
estimated over the three standard time scales and compared to the corresponding effects tests
which use constant exposure levels over time. All three time scales should be considered for every

pesticide. In some cases the screening assessment may indicate that one or more of the
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Figure 2.6-1. The exposure analysis produces a profile of exposure over time, usually starting at the time of pesticide application. In
screening assessments, this profile will be used to generate three estimates of exposure, integrated over the three standard time scales
(short, medium and long-term). These will usually correspond to the exposure periods used in the standard effects tests (currently <1
day, 5 days, and 20 weeks for birds). In refined assessments, special effects tests may be conducted to reflect the predicted exposure
profile more closely.
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time scales is sufficiently unlikely to cause significant exposure and further assessment is not
required. When arefined assessment is required, exposure should be examined in more detail (asa
continuous trend over time) to identify the magnitude and duration of potentially significant
peaks. If this suggests that non-standard time scales and varying exposure over time may be

critical to understanding risk, the use of specia effects studies may be considered.

2.6.4 Identification of Speciesat Risk

Another important consideration in problem formulation and the analysis phase of the assessment
process is the identification of the species to be addressed. Most agro-ecological scenarios
provide habitat for numerous species of birds and mammals. These species utilize the crop and
surrounding environment in different ways and in different intensities. It isimpractical to attempt
to develop arisk assessment that would include all bird speciesin agiven region. Additionaly,
some of these species may utilize their environment so they are rarely at risk of exposure to
pesticide applications. Thus, little value would be added to the risk assessment by considering

these species.

The concept of concentrating a risk assessment on afew key species stems from the awareness of
these circumstances and an understanding of the extreme cost of conducting a comprehensive risk
assessment. The proper use of key species in risk assessments can result in an assessment based
on the species most sensitive to the test substance and ecologically most susceptible to exposure.
Thus, an assessment based on elected key species provides safety considerations for amuch
broader array of species. However, this concept is only effective when appropriate consideration

is given to the selection of the key species.

Behavior isamajor factor used to help identify key species. Certain species may utilize
agricultural habitat for foraging, nesting, or both and, by the nature of their behavior, be at much
greater risk of pesticide exposure. A species which (1) spends a large proportion of itstime in the
treated crop and (2) has a foraging technique and preferred food (e.g., ground-gleaning
invertebrate eaters) that maximizes the risk of exposure would be an ideal key species. The

combination of foraging technique and food preference are characteristics by which birds and
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mammals may be broadly grouped for the purpose of risk assessment. Thus, by identifying
specific ecological characteristics, such asif and how much it forages and/or nestsin or near the
crop of interest, one can estimate the probability and degree of exposure. Additionaly, the
sengitivity of the species to the pesticide is important in the risk determination of acute or chronic
effects. Taxonomic considerations may aso be important when selecting key species because of

varying senditivity among species.

The use of key species provides several advantages when conducting arisk assessment. These
include narrowing the focus of the investigation, increasing the efficiency and sensitivity of the
assessment, and increasing the tractability of the assessment while reducing the cost.
Unfortunately, there are mgjor data gaps in our knowledge of some of the parameters mentioned
above for wild avian species. Little data is available on comparative sensitivity to pesticides
among wild bird species. Some information may be found in published acute toxicity tests and
through pesticide incident databases. Also, in most cases, we do not know what proportion of
avian species diets comes from pesticide treated habitats.

In the risk assessment process, the initial assessment may want to consider the substitution of
hypothetical "generic birds' and mammalsin place of specific key species, which may provide
adequate sengitivity while also facilitating an efficient and less costly assessment. The
hypothetical birds and mammals would have defined body size, life history strategy, foraging
technique and food selection that make them representative of three primary avian groups. These
are (1) small, granivorous passerine birds or small mammals, (2) small, insectivorous passerine
birds or small mammals, and (3) abird of prey that consumes passerine birds and small mammals.
Physiological and ecological characteristics can be assigned to these hypothetical birds which

characterize them as having high medium or low probability of pesticide exposure.

A dose-response equation (curve) defined by the LD50 and dose-response slope can be devel oped
for the hypothetical bird species. The LD50 for the hypothetical bird species can be estimated
from the LD50 of one or more experimental bird species by using the extrapolation factors
discussed in Chapter 4. Theoretically, smilar extrapolation methods could be used to estimate the
dose-response slope for the hypothetical bird species from the dose-response slope(s) of one or
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more experimental bird species. However, because the dose-response sope database is currently
inadequate for extrapolation purposes, it will be assumed that the dose-response slope for the

hypothetical bird species is equivalent to that of the experimental bird species.

If during the regulatory process, the screening level assessment uses (1) the hypothetical animals
with high probability of exposure and (2) the risk of negative effects is determined to be low,
further assessment may not be needed. If such arisk assessment indicates potential for higher
risk, amore refined assessment may be conducted to more definitively characterize the risk.
Recommended criteriafor the screening-level assessments, hypothetical bird and mammal species

are given in Appendix B3.

In cases where further refinement of the risk assessment is required, it may be appropriate to use
species that occur in the areas of or proposed use of the pesticide and may require additional
laboratory or field studies beyond those considered in the initial risk assessment. Since it may be
impractical to address al species potentialy at risk, careful selection of key species will help
ensure the assessment provides a reasonable estimate of the potentia risk to the more sensitive

species. A proposed set of criteriafor key species selection follows:

Criterial: The species are commonly nesting and foraging in and/or adjacent to (within the
drift zone) the agro-ecological scenario. The greater the proportion of time spent
on the treated field (PT), the stronger the justification for selection as a key

Species.

Criteria 2: Their foraging techniques render the species subject to exposure.

Criteria 3: The species obtain a substantial portion of their diet from the treated field or
adjacent habitat within the drift zone. The greater the proportion of diet obtained
on the treated field (PD), the stronger the justification for selection as a key
Species.

Criteria4: The speciesis sensitive to the test substance.
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Criteriab: Data verifying criterial - 3 are available or obtainable.
. Acute toxicity datais available for the selected species or data are available from
other species that can be scaled to represent the sensitivity of the selected species
. Data are available on PD and PT (see Section 4.2 for discussion of PD and PT) or
can be obtained for the selected species from field studies of the selected species.

Criteria 6: Appropriate measurement and assessment endpoints can be evaluated in the field
or laboratory for the selected species. (See Section 3.5 for discussion of

measurement and assessment end points.)

Appendix B3 provides further information and example for selecting key species.
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3.0 EXPOSURE ASSESSMENT

3.1 INTRODUCTION

3.1.1 Objective of an Exposur e Assessment

The objective of the exposure assessment portion of aterrestrial ecological risk assessment of
pesticides is to estimate PDFs of pesticide intake or dose to non-target terrestrial organisms. What
is meant here by the term “dose” is a quantifiable amount of material introduced into or taken up
by an organism. For the dose estimate to be useful in the estimation of ecological risk, it should be
expressed in terms of pesticide weight per organism body weight per unit time, i.e. mg/kg/day.
While environmental concentrations, such as ppm on wildlife food sources, have been used to
estimate exposure to wildlife, they do not directly address the amount of chemical ingested by the
individual, the critical quantity producing the response. Unlike exposure concentrations, estimates
of dose take into account biological factors affecting exposure such as ingestion rates, foraging
patterns, and percentage of diet represented by different food types. As further discussed in the
effects section, current wildlife toxicological tests may have to be modified so exposure estimates
in weight of pesticide per body weight per time can be directly compared to results of wildlife

toxicological test endpoints.

A caveat must be noted concerning the relationship of toxicant dose to the quantity of toxicant
actually reaching a site or sites of action within the organism. The relationship was not explicitly
considered in the Terrestrial Workgroup discussions. To produce an effect, an ingested
compound must first be absorbed, for example in the gastrointestinal system. The compound is
then circulated to the site of action viablood plasma. Toxicants are delivered to most organs and
tissues (other than the gut and liver) by systemic blood circulation. The proportion of a chemical

dose reaching the blood along with the toxicity of the chemical will determine how much dose an
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organism can receive before its exhibits an adverse effect.. Bioavailability is defined as the ratio of
a compound in the plasmato that consumed by oral ingestion (Amdur et al., 1994). Systemic
availability may be modified by reduced absorption after oral ingestion, intestina
biotransformation, hepatic biotransformation, and formulation ingredients that modify solubility,

particle size, or uptake of compounds.

Bioavailability could sometimes be determined in higher tier risk assessments for special casesin
which prior information indicates bioavailability could be an issue. However, in most casesit will
sufficient to base the assessment on the external dose, i.e. the total toxicant entering the organism
and external dose response curves. The methods proposed in this chapter therefore focus on

estimating external dose.

3.1.2 Conceptual Model of Exposure Pathways

The initia step in an exposure assessment is identifying routes of exposure and the major variables
that potentially could influence the distribution of doses. Terrestrial wildlife can be exposed to
pesticides through multiple pathways (Fig 3.1-1). They may ingest contaminated food or soil,
drink or swim in contaminated water, and breathe contaminated air. They may also directly ingest
granular formulated pesticides mistaking them for grit or seeds. Dermal exposure may occur if
the animal’ s skin contacts spray particles or contaminated vegetation, water or soil. Residues
deposited on skin, fur and/or feathers may become a source of oral exposure during grooming,
preening or other activities. Because wildlife species are mobile, moving among and within
various habitats, exposure can vary depending on habitat use and the extent of contamination of
its components. As a consequence, estimation of wildlife exposure requires the consideration of a
number of variables including environmental residues, routes of exposure, habitat requirements

and spatial movements for the species associated with the pesticide use area.

For terrestria wildlife, three magjor exposure pathways can be identified (Figure 3.1-1). They are

oral, dermal, and inhalation. Oral exposure occurs through the consumption of
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Figure 3.1-1. Conceptual model of exposure pathways for birds and mammals. Thickness of
arrows denotes relative importance of pathways.
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contaminated food, water, or soil and direct ingestion of granular products mistaken as grit or a
food source. Dermal exposure occurs when pesticides are absorbed directly through the skin
when the animal contacts spray particles directly or contacts contaminated biotic or abiotic
components of the habitat. Exposure from inhalation occurs when volatile pesticides or fine

particulates or droplets are respired into the lungs.

3.1.3 Content of the Exposur e Assessment Chapter

The following sections of the Exposure Assessment Chapter explore various aspects of estimating
dose distributions to non-target terrestrial organisms. Descriptions of the factors affecting dose
and information applicable to all dose equations are provided in Section 3.2. Dose equations and
discussions on estimating dose equation variables are provided for different exposure pathways
and associated environmental mediain Sections 3.3 (ingestion of food), 3.4 (ingestion of water),
3.5 (ingestion of granules), 3.6 (ingestion of soil), 3.7 (overall ingestion), 3.8 (inhalation of air),
and 3.9 (dermal contact with various environmental media). Estimating pesticide concentrations
in environmental media, outputs from and inputs to exposure assessments, and different proposed

levels of exposure assessment are discussed in Sections 3.10, 3.11, and 3.12, respectively.

3.2 FACTORSAFFECTING DOSE

The pesticide dose non-target organisms receive will depend upon pesticide concentrationsin
environmental media and the frequency and magnitude of the ingestion of, inhalation of, and
dermal contact with the pesticide contaminated environmental media (food, water, granules, soil,

and air).

3.2.1 Physical Chemical and Biological Components of Dose

The numerous factors affecting dose can be divided into two types or components, a physical

chemica component and a biological component. The physical chemical component consists of
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physical chemical properties of the pesticide and environmental media that influence the
concentrations of pesticides in pertinent environmental media (e.g., food, water, granules, soil,
and air) as afunction of time and location within each medium. The biological component consists
of animal behavior/attribute factors (which along with various properties of the environmental
media) affect the frequency and magnitude of the ingestion of, inhalation of, and dermal contact

with pesticide contaminated environmental media

Some variables described below such as the food ingestion rate are explicitly included in the dose
equations provided in Sections 3.3 through 3.9. Others variables such as dissipation rate
constants are not explicitly included in the dose equations, but are used to estimate the variables
which are explicitly included in the dose equations such as the pesticide concentrations in

environmental media
For each of the exposure pathways depicted in Figure 3.1-1, a number of physical, chemical and
biological variables influence the extent of exposure. The major physical chemical variables that

influence dose for each of the routes of exposure include the following:

Pesticide and Degradate Properties: Aqueous solubility, acid/base (pK,s), Henry’s constant,

octanol/water partition coefficient, diffusivities, soil/water partition coefficients, plant/water
partition coefficients, foliar washoff, overall and process specific dissipation rate constants in

various environmental media, and (for degradates) formation rate constants.

Plant/Crop Characteristics and Agricultural Practices: Dates of planting, emergence and muturity

of wildlife food sources; crop, crop and field edge cover; foliar interception, field vegetative
residue cover, root depth, soil incorporation depth, tillage practices, irrigation practices, spray
elevation, spray nozzle size, droplet size spectrum and number, dates, rates, and method of

pesticide applications.

Meteorological Conditions. Precipitation, temperature, solar irradiation, relative humidity, wind
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speed, and wind direction.
Soil Properties: Organic content, pH, soil texture, initia soil moisture, field capacity, wilting
point, saturated hydraulic conductivity, slope, temperature, bulk density and porosity as a function

of vertical and/or horizontal segmentation.

Wildlife Water Source Properties(Dew and Surface Water): Pesticide loading due to direct

application, runoff, soil erosion and spray drift, size of water source, pH, temperature, suspended
sediment concentration, dissolved natural organic concentration, redox potential, base flow, depth

and width of water source, and dispersion coefficients.

For the biological component the major biological variables that influence dose for each of the

routes of exposure is species dependent and include the following:

Food, Water and Soil Ingestion Rates. Food type or types and availability, feeding strategy,

developmental stage, reproduction status, sex, environmental conditions, individual weight, food
and water requirements related to metabolic strategies of species, availability of water sources,

and acceptability of contaminated food or water.

Dietary Diversity: Total number of ingested media, and the proportional ingestion rate of each

media

Habitat Requirements and Spatial Movements. Home range, spatial arrangements of habitat

components, quantity and quality of habitat components, habitat use in time and space and
portion of habitat that is contaminated.

Direct Ingestion (Granular Formulations): Granular size, granular shape, carrier, color, natural

grit availability, and species grit use.
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Inhalation and Dermal Absorption Rates: Inhalation rate, preening/grooming behavior, dust-

bathing behavior, locomotory behavior and its effects on the frequency and degree of contact with
contaminated soil, water, foliage etc., physico-chemical properties affecting uptake across

membranes.

Whileit'simpossible to include all of the variables and their possible interactions which may affect
the distribution of dose, it is possible to address most of the important variable distributions that
are believed to contribute most to the variation in dose to non-target terrestrial species. There are
literally thousands of variables that can influence the extent of exposure. A number of these are
inter-dependent and they can vary spatially and temporally. These facts make it a challenge to
accurately estimate dose to non-target species. However, if advancements in estimating ecol ogical
risk are to be made, these challenges must be addressed and through time, if the resources are

committed to research, the uncertainties in risk estimates will be better defined and reduced.

3.2.2 Information Applicable to all Dose Equationsin Sections 3.3 through 3.9

Equations for estimating the pesticide doses (to birds or mammals) associated with the various
exposure pathways and associated environmental media discussed in Section 3.2 are provided
below in Sections 3.3 through 3.9. The equations give the one day dose on any givenday i (in
mg/kg body weight*day), the cumulative dose over multiple days N; (in mg/kg BW), and the
average daily dose (in mg/kg BW*day) as afunction of pesticide concentrations in various

environmental media.

For purposes of illustration, we have chosen to base the dose equations provided below in
Sections 3.3 through 3.9 on a daily time step. However, the same equations would be applicable
to adifferent time step such as a hourly one as long as the variables were defined in terms of the

different time step instead of adaily time step.

The dose equations provided in Sections 3.3 through 3.9 imply a‘cell’ model of habitat structure

3-7



© 00 N oo o b~ W N Bk

10
11
12
13

14

15

16
17
18

19
20
21

and anima movement. The environment is divided into a number of fields, some of which may be
treated with pesticide while others are untreated or receive only spray drift. Animals move from
one field to another, accumulating exposure via the various routes (dietary, dermal etc.) as they
go. Note that although the spatial unit used in the dose equations is described as ‘field’, in
practice other habitat types such as hedgerows and wetlands may also need to be considered. In
this case, the subscript j in the equations will refer not just to fields, but to all of the different
habitat cells which are considered in the assessment. The equations do not preclude the bird or
mammal foraging over more than one field or other habitat unit in each time unit (e.g. more than
one field or habitat unit per day).

In the dose equations provided below in Sections 3.3 through 3.9, the pesticide exposure
concentration C;, in environmental medium k within field j on day i should theoretically be the
time averaged concentration over the period in which the organism is exposed to environmental
medium k in field j on day i:

tij2

OC; (D)t

— tiq

Cijk = (Eq. 3.2-1)
(th2 tl]l)

where,

ty = beginning of the exposure period in field j on day i (hr)

tin = end of the exposure period in field j on day i (hr)

Cy(t) =  pedticide concentration in medium k in field j during day i as afunction of time

Assigning ij subscripts to the beginning and end of exposure periods within agiven fieldj ona
given day i is necessary because a bird can be in more than one field on a given day and may

revisit the same field on one or more additional days.
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If the organism isin fieldj all of day i, (t;, - t;) = (t., - t) = 1 day and C,,, Will be the average
concentration over the whole day. However, if the organism isnot in field j for the entire day, the
time averaged concentration over the exposure period (t;, - t;;,) will be either greater than or less
than the time averaged concentration over the entire day depending on whether the organismisin
fieldj early or later onday i. To be conservative and to simplify computations, C;, for the entire
day can dternatively be assumed to be equal to the initial pesticide concentration in media k
within field j at the start of day i at t=t;: C,(t=t;). Such an assumption also works well with adaily

time step model which provides a different estimated concentration for each succeeding day.

3.3 DOSE RESULTING FROM INGESTION OF CONTAMINATED FOOD

3.3.1 Detailed Equationsfor Dose Through Food

The detailed equations below for dose through food are similar to ssmpler ones provided by
Pastorok et a. (1996) and Sample et al. (1997) except they are summed over different fields or
different fields and days. The one day dietary dose for any foraging day i, the cumulative dietary
dose over N; foraging days and the average daily dietary dose over N, foraging days a bird or
mammal receives through ingestion of pesticide contaminated foods (k) from foraging over one or

more fields (j) per day are given respectively by:

One Day DOSE ¢ ay(asy iy (I Mg / kg body Wt * day) = jgNlj kélN:Fl Ric * Cj W
=1 k=
(Eqg. 3.3-1)
=N, =N} k=N,
Cumulative Dose,, ( N, daysin mg/ kg body Wt) = .éll ,éll él FIR; - Cj /W
(Eq. 3.3-2)
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Average Daily D0sg,, in mg/kg BW*day = Cumulative D0Sg;q4,/N; (Eq. 3.3-3)

where,

k= index for different food types (e.g., short grass, long grass, insects, fruits, seeds, soil, etc.)

N, = maximum number of different food types consumed by the bird or mammal

] = index for different foraging fields

N, = maximum number of fields foraged by the bird or mammal over the foraging period of
interest

i = index for different foraging days

N, = number of days during the foraging period of interest for which adose isto be computed

FIR, = food intake rate (kg fresh weight/day) of food type k by the bird or mammal in field j on
day i (FIR;, = Qif the bird or mammal isnot in field j on day i or if food typek isnot in
field j)

Cy = Iinitid or average pesticide concentration on/in food type k in field j on day i (mg
pesticide’kg fresh weight food mass). If the field | has not been treated or has not received
spray drift by day i, Cy, = 0.

W = body weight of the bird or mammal (kg)

The food intake rate of food type k by abird or mammal in field j on day i is given by:

FIR, = (PR, )(TFIR )(PD, )(FRD, )1 (AV,.)] (Eq. 33-4)

where,

PF; = proportion of total food or diet obtained from field j on day i (dimensionless)

TFIR = total food ingestion rate = total food consumed on day i (kg dry weight/day)

PD, = proportion of food or diet obtained from field j on day i that was derived from
food type k

FDR, = fresh to dry weight ratio for food type k on day i (dimensionless)
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AV = avoidance factor for food k in field j on day i = amount by which animal reduces
consumption of food j in field k on day i when it is contaminated, as a fraction of
what consumption would be if the food was not contaminated (dimensionless). The

avoidance factor is a function of the contaminant level C;,.

Note that the representation of avoidance by AV, in equation 3.3-4 is a simplistic representation
of the combined effect of several types of possible avoidance behavior. Avoidance might occur by
animals reducing the consumption of specific contaminated food items, by reducing their total
food intake (e.g. if temporarily incapacitated, or suffering genera loss of appetite), or by moving
to feed in less-contaminated habitats. These three different types of avoidance behavior could be
represented in more detail, by making PD;,, TFIR;, and PF; al afunction of Cy,. In practice, it is
unlikely to be possible to measure these different responses separately, so they are combined as
AV, . However, thisis not entirely satisfactory as it does not specify whether animals compensate
for avoidance of one food type by increasing the consumption of another. The estimation of AV,

is discussed further below and in Appendix C2.

Note that the fresh to dry weight ratio FDR is not needed in cases where residue concentrations
are given in mg chemical/kg dry weight of food instead of the more usual units of mg chemical/kg
fresh weight of food. The reason isthat in such cases, the food consumed can also be kept on a
dry weight basis. Conversion of food consumption to a fresh weight basis, to be consistent with

concentration on afresh weight basis, is then not necessary.

When possible, residue concentrations should be expressed on a dry weight instead of afresh
weight basis. When residue concentrations are expressed on awet weight basis, changes in
concentration often reflect changes in water content as well as dissipation and it is generally not
possible to distinguish between the two different sources of the change. Also, as previoudy
indicated, the FDR factor is not needed when residue concentrations are expressed on adry

weight basis.

Combining Equations 3.3-1 and 3.3-4 gives the full equation for the one-day dose in mg/kg
BW*day:
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i=N; j:NJ
[o] [o]

One Day DOy sy = & & (PF, )(TFIR)(PD”k)(FDRk)[l- (A\/ijk)]cijk /W

i=1 j=1
(Eq. 3.3-5)
An analagous equation can be given for the Cumulative Dose by combining 3.3-4 with 3.3-2.

3.3.2 Simplified equations for dose through food

As dready mentioned, Equation 3.3-5 impliesa‘cell’ model of habitat structure and animal
movement. To use it as shown, in its detailed form, requires a very large amount of information.
For example, estimates are required of pesticide concentrations on arange of food typesin each
field within the organism’ s foraging range, in each time unit (daily or even hourly). The
movements of the animal between the fields, and its behavior in each, must also be modeled. If
empirical datawere used for all these parameters, the assessment would become prohibitively
expensive. However, in most cases thislevel of complexity will not be required, as a much simpler

version of the model will estimate exposure with sufficient certainty.

To smplify the equation, the overall habitat can be divided into only 2 categories. the area which
is treated with pesticide, and that which isnot. In this case athird category, a drift area, is not
considered. If the untreated area contributes nothing to exposure, it can be disregarded in the
model. The subscript j can then be dropped from the equation. Also, PF isreplaced by the
fraction of total food obtained in the treated area, which can be denoted as PT. Mathematically,
PT and PF are related by the following equation:

[o}
_a PR
PTI - j=treated- fields . (Eq. 33
oS o} o} 0
¢ a PF; + a PR~
€ j=treated- fidds j=untreated- fieldsd
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However, in practice it may more often be estimated or measured directly, as data on food intake

for each individua field will rarely be available.

A further smplification isto assume AV isthe same for all food types. Thisis a practical necessity

asdataon AV will usually be available for only one food type, i.e. standard test diet. (See below.)

With these ssimplifications, equation 3.3-5 becomes:

k:Ni<

One Day DO,y = & (PT)(TFIR )(PD, J(FOR, )[1- (AV))[c, /W

k=1

(Eq. 3.3-7)

PT, TFIR and AV now require only a single estimate for each day (although note that AV is till a
function of C, as before). PD, FDR and C only require one estimate per food type (k). In effect,
these six parameters are averaged over al fieldsin the treated area for Equation 3.6-6, whereas
separate values are used for each field in equation 3.6-5. Where averages are used, careis
required to ensure that they are properly representative of different parts of the treated area.

Equation 3.3-7 is equivalent to that given by Pastorok et al. (1996), except that the latter uses
different parameter names (FIR for TFIR, and DWR for FDR) and does not include any term for
avoidance (AV). Also, the Pastorok equation provides estimates for more than one species, by
using an extra subscript to alow PT, FIR and PD to vary between species. Equation 3.3-7 isalso
similar to that of Sample et al. (1997).

The smplifications in Equation 3.3-7 imply some important assumptions. Perhaps most
importantly, it is assumed that all treated areas are equivalent to one another. In reality, some of
the untreated areas will receive spray drift — this can be accommodated easily in the full model

(Eq. 3.3-5) but isignored in 3.3-7. If equation 3.3-7 is used as the basis for arisk assessment,
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consideration should be given to whether the result would be different using more realistic

assumptions. If this appears possible, the assessment may need to be repeated with the full model.

Further simplifications can be made to Equation 3.3-7. For example, if it is assumed that the
animal feeds exclusively within the treated area, and exclusively on one food type (for example,

that with the highest concentration of pesticide), and there is no avoidance, then:

One Day DOSeyuay @y (iN Mg/ kg body Wt) = (TFIR J(FDR )C, /W (Eq. 33-9)

Thisis equivalent to the simple estimate of exposure which has been used in the past and is often

regarded as conservative for screening purposes.

In a probabilistic assessment it may often be desirable to examine the effects of variation in PT,
PD and AV. Equation 3.3-7 is therefore taken as the main basis for assessing exposure through
food. Nevertheless, the preliminary screening assessment will often be equivalent to the smpler
model 3.3-8, and it may sometimes be necessary to progress to the more complex model 3.3-5in

more refined assessments.

The following sections examine the types of data which are available for estimating the parameters
in these smplified equations, and how the estimates can be refined when necessary. Estimating
pesticide concentrationsin food (C,,,) is discussed in more detail in Section 3.10 and Appendix
C4. Estimating PT and AV are aso discussed in more detail in Appendices C1 and C2.

3.3.3 PT - Proportion of diet obtained in treated area

Animals which obtain all their food from within the treated area are likely to ingest alarger dose
of pesticide than those which obtain a proportion of their diet elsewhere. Thisvariationis
represented by PT in Equation 3.3-7. Current approaches tend to assume PT = 1, at least in the
screening stages of risk assessment. In fact, PT may be close to one in situations where there is

little non-crop habitat and large areas are treated with the same pesticides at the same time.
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Often, however, animals will obtain a significant proportion of their diet from non-crop areas, or
from adjacent non-treated crops of the same or different types. In these cases, setting PT = 1
substantially overestimates exposure. Setting PT = 1 remains reasonable as a conservative
assumption for the screening stages of the assessment. However, predicting the magnitude and
frequency of exposure will require information on the distribution of PT for relevant speciesin
relevant habitats.

The range of possible approaches to estimating PT is considered in detail in Appendix C1.

Ideally, one would estimate PT as the proportion by weight of the diet which is obtained from
treated areas. This can be done in some circumstances using detailed field studies, but is generally

too difficult to be arealistic option.

An dternative is to measure the proportions of time that the animal spends in treated and
untreated areas. Thisis simpler but can only be used as a measure of PT if the amount of time
spent in each areais proportional to the amount of food obtained there. Thiswill not be true if
some parts of the habitat are used primarily for foraging, and others primarily for other activities
such asresting; or if feeding rate is higher in some parts of the habitat than others due to
differencesin food availability. The two main approaches to estimating PT for time are visua

observations and telemetry (radio-tracking).

Counts of unmarked animalsin treated and untreated areas are of little help in estimating PT,
because it is not possible to determine (a) whether successive counts in the same area are the
same animals or different ones, or (b) whether the individuals seen in one area are the same or

different as those seen in adjacent areas.

A morereliable record of individual behaviour can be obtained if the animals are marked, for
example with coloured bands. Even then, however, continuous observations are difficult to
obtain, and foraging records are likely to be biased in favour of those habitats where animals are

most easily observed (e.g. more open habitats).
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In principle, these limitations can be overcome using radio-tracking techniques. These may be
manua (where the radio-tagged animal is followed by observers on foot or in vehicles) or
automatic (where fixed receiver stations automatically record signal information from which the
animal’ s location can be calculated).

An example of manual tracking specifically designed to measure PT is provided by recent studies
in UK apple orchards (Crocker et al., in prep.). The results showed that different species had
different patterns of use of the orchard environment, and that the potential for exposure to
pesticides varied widely between individuas. An example of the resultsis shown in Figure 3.3-1,
for European blackbirds. Most individuals spent less than 10% of their time in the orchard center,

but afew individuals spent up to 70% of their time there.

Distributions such as that shown in Figure 3.3-1 could be used for a probabilistic anaysis of PT.
(See Appendix C1.) However, the data may be affected by biases of several types. Careful

interpretation is essential.

. Animals captured for tracking may be a biased sample of the local population,
. The populations which are studied may not be representative of other populations, and
. The proportion of time spent in the treated area may not be a good measure of the

proportion of food obtained there.
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Figure 3.3-1. Distribution of time spent in the central (sprayed) areas of UK apple orchards by
European blackbirds, obtained by radio-tracking.
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A third approach to estimating PT might be to use existing information on home ranges. For
example, if the average home range for a species was smaller than the area of atypical treated
field, then at least some individuals may have their home range entirely contained within asingle
treated field. Thisat least would show that using a conservative assumption (PT = 1) isa
reasonable upper limit for the speciesin question. However, it is more difficult to estimate the
distribution of exposures by this approach. Thiswould require data on the spatial and temporal
distribution of pesticide applications, and a means of defining the central point of each home
range. It is concluded that obtaining areliable quantitative estimate of PT using home range is
unlikely. However, if interpreted by suitable experts, data of this sort may be adequate to make
semi-objective assessments of the upper limit to PT for a particular species and, perhaps, to guess
a ‘typical’ values. Thiswould not be reliable enough for a final assessment of exposure but might
be helpful at intermediate levels of assessment, in deciding whether PT is sufficiently important to

warrant measuring in the field.

So far, this section has implied that the world comprises just two types of habitat, treated and
untreated, as assumed in Equation 3.3-7. In reality the situation is more complex. For example,
some species might spend very little timein the treated crop itself, but obtain nearly all itsfood in
the drift zone immediately around the crop. For example, in the study described earlier, most
European blackbirds spent very little time in the orchard center, but about twice as much time
(average about 35%) in hedgerows and scrub immediately adjacent to sprayed areas. To assess
the contribution of these drift zone habitats to overall exposure would require estimates of PT for
the drift zone as well as the treated area. It would aso require estimates of pesticide residuesin
the drift zone, which will generally be much lower than in the treated areaitself. These might be
obtained by field measurements, or perhaps using models of spray drift to estimate the proportion
of the application rate which is received by the drift zone. This approach could be accommodated
in the full model (Equation 3.3-5), where PT is replaced by PF, by using the subscript j to
distinguish the drift zone from the treated and untreated areas.

The full model could also be used to distinguish between different types of treated, drift, and
untreated aress, if sufficiently detailed data on PF were available. For example, it might be
desirable to distinguish fields with different crops, or fields treated with the same pesticide applied

3-18



© 00 N oo o B~ W N Bk

e i e =
aa A W N R O

16
17
18
19
20
21
22
23
24
25
26

at different times or different dose rates. In the real world, animals may encounter severa different
pesticides which may have additive or synergistic effects, but it is currently very rare to rake

account of thisin risk assessment and was not considered.

This section has referred to treated areas, untreated areas and drift zones without considering
their spatial and temporal distribution. In redlity, pesticide applications are clumped in time and
space, not random, and the same is true of animals and their foraging activities. If pesticide
applications and animal foraging were both randomly distributed in space, every individua would
have the same chance of encountering a treated field. If pesticide applications and animal foraging
were very strongly clumped, most individuals might never encounter atreated field, while afew
might find their whole foraging range treated. Real exposure scenarios lie somewhere between
these extremes, depending on the degree of clumping which is present. Ignoring clumping in
situations where it isimportant will tend to under-estimate exposure for the most-exposed part of
the population. The effects of clumping can be assessed using models of exposure which take
account of spatial patterns.

Models of exposure can be made spatially explicit, for example by using the techniques of
Geographic Information Systems (GIS). The components of such a system are illustrated in
Figure 3.3-2. First, the model landscape would be defined. This could be a hypothetical
landscape, or an actual one (e.g. based on maps or satellite imagery), but would need to be
broadly representative of the type of landscapes relevant to the risk assessment. Residue
distributions in the landscape could be smulated using information on spatial and temporal
patterns of pesticide use within the landscape, and by modelling transfers between treated and
untreated areas and degradation over time. The species present would be identified, for example
from local surveys or information on national distributions. Animal movement patterns within the
landscape would be defined using information on habitat preferences, home ranges and behavior,

which could include visual observations or telemetry data of the types discussed
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Figure 3.3-2. Illustration of a spatially explicit approach to modeling
wildlife exposure to pesticides
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earlier. This needsto be repeated for each of the species under consideration. Finally, exposure
estimates could be obtained by smulating the movements of each individual and recording its
intake of pesticide as it moves through the landscape. Using Monte Carlo techniques this could
be repeated for many individuals (and perhaps landscapes), producing a set of dose/time curves to

show the range of variation in the population.

Technology has advanced to a state where this type of approach is beginning to be feasible. An
example of amodel using standardized hypothetical landscapes, with ssimple rules for animal
movements through the landscape, is provided by Freshman and Menzie (1996). Another example
isthe PARET model which has been developed as part of the Terrestrial Workgroup's efforts.
(See Chapter 5.5 and Appendix A2). Examples of GIS approaches using data on real landscapes
and behavior are provided by Henrigues and Dixon (1996) and Banton et al. (1996). Thistype of
approach is much more costly to develop, and isonly likely to be considered in cases where

gpatial factors are thought to make a critical difference to the outcome of the risk assessment.

It is concluded that PT islikely to be an important and highly variable parameter influencing
exposure, but is difficult and costly to measure reliably in many agricultural habitats. A sequentia
approach is therefore recommended, as outlined below, to ensure that effort is only expended on
estimating or measuring PT in those cases where it is important to the outcome of the risk

assessment.

If it appears that spatially-explicit approaches may be required often then there would be
opportunity for sharing the cost of collecting much of the data, as they are not specific to
individua pesticides.

For screening assessments, it will generally be appropriate to assume PT = 1. To refine the
assessment, estimated lower and upper limits for PT could be developed using expert judgement

and existing information on:

» Foraging ecology and behavior of key species, including time budgets, habitat use (including

the drift zone) and home ranges;
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* The spatia distribution of habitat types and crops; and
» The spatia and tempora distribution of pesticide applications.

If the data are good enough, they can be used to construct a hypothetical distribution for PT. If
exposure in the drift zone is likely to be significant, the ssimple model (3.3-7) can be expanded to
distinguish it from the treated and untreated areas. The proportion of food obtained in the drift
zone can then be estimated as well as PT, and used to estimate the relative contributions of the

drift zone and treated area to overall exposure.

If it appears (e.g. from sengitivity analysis) that PT has a critical influence on exposure, it may be
worth attempting to measure it in field studies, or using alandscape model to examine spatia
effects. Depending on the field scenario, visual observations or telemetry may be used to quantify
distributions of PT in the field for appropriate species in a representative range of conditions
relevant to the risk assessment. If it appears that the spatial distribution of treated areas may have
acritical influence on the risk outcome, it can be accounted for in spatially-explicit models or GIS

approaches.

3.3.4 TFIR-Total Food Intake Rate

Tota food intake rate (TFIR) is an estimate of dietary consumption in units of kg or g food /
time. TFIR istypically reported in units of dry matter.

Thetime step is critical in risk assessments and will often be standardized to match units of
toxicology studies or time steps of toxicological concern. (See Chapter 2 for a discussion of
time-scale.) For example, some animals may gorge-feed in short bouts, while others may graze
steadily throughout a day or at a steady rate for weeks. Thus time steps of toxicological concern
could be acute short-term feeding bouts (e.g., 5 min) or chronic multi-day exposure periods (e.g.
5 days or 20 weeks). These are referred to below as short-term and medium/long-term feeding
scenarios, respectively.

In the wild, TFIR can be highly variable within and among individuals, age-classes, or species, and
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over time, depending on factors such as metabolic demand, food availability, food type, weather,
competition for food, and storage capacity of the animal. Birds and mammals may reasonably
increase TFIR 2 to 3 fold after short bouts of starvation in poor weather. An upper limit to intake
is thought to be about 5 fold normal daily consumption (Kirkwood 1983). Examples of gorge
feeding are provided by data on pigeons feeding on treated seed. Captive feral pigeons can be
trained to consume most of their daily requirement in less than 10 minutes (Pascual et al., in
press). In the field, over 50% of Woodpigeons feeding on newly-sown cereals consumed less than
0.25 g/minute, but about 1% fed at over 2 g/minute (Hart et al., in press).

Methods for estimating daily food intake are presented by EPA (1993). TFIR can be estimated as.

TFIR= FMR/ ME (Eq. 3.3-9)
where,
FMR = Field Metabolic Rate (kJday)
ME = Metabolizable Energy content of diet (kJ/g).

Field metabolic rate (FMR), is the daily sum of energy that a bird or mammal would use for
maintenance, basal metabolism, thermoregulation and activity, but not reproduction, growth or fat
storage. Field studies of FMR for birds and mammals that were conducted with similar
methodology were examined by Nagy (1987). He derived regression equations to estimate FMR
in units of kJ/ day for birds and mammals. (See Table 3.3-1.) Different equations were
calculated for different taxonomic and ecological groupings of birds and mammals. The equation

takes the form of:

log y = log a+ blog x (Eg. 3.3-10)
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Table 3.3-1. Summary of regression statistics for the relationship of body mass to field metabolic rates (kJ/d) and feeding (dry matter

ingestion) rates (g/d), after Nagy (1987). Some equations for food intake by birds were recently updated by Nagy et al. (in prep) and have

improved statistical relationships compared to the earlier equations: these are indicated by asterisks in the table.

Group unitsof | loga (SE) 95% Cl of loga | b (SE) 9%5%Clofb [N r? P
y

Mammals

All eutherians | kJ/d 0.525 (0.057) ] 0.410 - 0.640 0.813 (0.023) ] 0.767 - 0.859 | 46 0.967 <0.001
g/d -0.629 (0.065) | -0.760 - 0.497 0.822 (0.026) ] 0.769-0.874 | 46 0.958 <0.001

Rodents kJd 1.022 (0.141) ]0.734-1.310 0.507 (0.087) ]0.330-0.684 | 33 0.524 <0.001
g/d -0.207 (0.194) | -0.602 - 0.189 0.564 (0.119) ]0.322-0.807 | 33 0.421 <0.001

Birds

All birds kJd 1.037 (0.064) ]0.908 - 1.166 0.640 (0.030) ] 0.580 - 0.699 | 50 0.907 <0.001
g/d -0.188 (0.060) | 0.310- (-0.067) ] 0.651 (0.028) ] 0.595-0.707 | 50 0.919 <0.001
g/d* -0.310 0.720

Passerines kJd 0.949 (0.059) ] 0.809 - 1.088 0.749 (0.037) ] 0.663- 0.835 | 26 0.899 <0.001
g/d -0.400 (0.075) | -0.554 - (-0.247) ] 0.850 (0.053) ] 0.741-0.960 | 26 0.915 <0.001
g/d* -0.409 0.822

Non- kJd 0.681 (0.102) | 0.442-0.920 0.749 (0.037) |0.663-0.835 | 24 0.899 <0.001

passerines
g/d -0.521 (0.132) | -794 - (-0.248) 0.751 (0.048) ] 0.652-0.850 | 24 0.919 <0.001
g/d* -0.373 0.740

13 * improved estimates based on revised analysis (Nagy et dl., in prep.).
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logy = log ;o FMR (in units of kilojoules per day),

loga= intercept of the line,
= untransformed value of FMR (kj/d) for a1-g animal,
= dope of theline,

X = body mass (g).

Metabolizable energy (ME) can be expressed as:

ME = (GE)( AE) (Eg. 3.3-11)
where,
GE= gross Energy content of diet (kJ/Q)
AE= assmilation Efficiency (unitless), the fraction of ingested energy that is

metabolizable.

Gross energy content (GE) varies between food types. average values for major categories of
foods are presented by EPA (1993). Assimilation efficiency (AE) is more specifically defined for
birds as a metabolizable energy coefficient (MEC) to account for nitrogen recycling (Karasov
1990). AE and MEC may be influenced by diet type (seed, invertebrate, meat), amount of food
ingested (decreasing efficiency with increased intake), physiological conditions. Frequency
distributions of MECs in birds reveal variability related to food type and are presented by Karasov
(1990).

Combining Equations 3.3-9 and 3.6-11,

TFIR= FMR/ (GE)( AE) (Eq. 3.3-12)

One option is therefore to substitute FMR/(GE x AE) for TFIR in the dose equations 3.3-5 and
3.3-7. This complicates the calculations but has severa advantages, enabling the user to:
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. Enter datafor FMR, GE and AE which are specifically relevant to scenario under
consideration,

. Incorporate uncertainties in the estimation of FMR, GE and AE into the overal
assessment, and

. Take account of mixed diets, using the methods outlined by EPA (1993).

An alternative option is to use equations that predict dry food intake directly from body weight, provided
by Nagy (1987). These were developed by combining the allometric equations for FMR (Equation 3.3-
10) with generic assumptions on diet composition and standard values of ME for each food type. Some
of the resulting equations are listed in Table 3.3-1. For example, for passerine birds Nagy (1987) gives

the following equation:

log (TFIR) = log0.4 + 085log W (Eqg. 3.3-13)

where TFIR istota daily food intake in dry weight, and W is body weight (both in grams). Using this
equation, a 30g passerine bird would be estimated to ingest 7.2g dry weight per day.

Using Nagy’s (1987) equations for food intake has the advantage of smplicity, as they do not require the
user to consider FMR, ME, GE and AE. However, they are based on generic assumptions about diet

composition, GE and AE which may not be appropriate for particular exposure scenarios.

In screening assessments, TFIR could be estimated with existing information on actua intake, if available.
Otherwise, Nagy’s (1987) equations could be used to obtain a point estimate of TFIR for generic species.
A case using a conservative assumption might be 2 to 3 times the daily TFIR. For short-term exposures,
it would be assumed that this amount was ingested in afew minutes, equivalent to the timescale of
exposure in the acute oral LD50 test. For medium/long-term exposures, TFIR would be assumed to

distributed evenly over the whole feeding day.
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In refined assessments, TFIR might be estimated from its separate components FMR, GE and AE, rather
than from the Nagy (1987) equations. Also, information on the distribution of TFIR might be used.
Suitable distributions from the literature would be used, if available. Otherwise, distributions could be
estimated using the confidence intervals for Nagy’s (1987) estimates of food intake, or for the separate
components of TFIR, depending which method was being used. For short-term exposures, it would again
be assumed that TFIR was ingested in afew minutes, as in the screening assessment. For medium/long-
term exposures, diurnal variationsin intake rate could be considered, if suitable effects data were
available for comparison. In addition, the relative importance of the short- and medium/long-term
exposure scenarios could be assessed by obtaining information on the relative frequency of gorging and

non-gorging behavior in the wild.

If sengitivity analysis indicated that variation in TFIR was critical to the assessment outcome, then
consideration would be given to obtaining improved estimates. In the first place it might be worth
developing more refined distributions using existing data, for example by examining the original data on
which the allometric equations are based. Alternatively, it might be decided to generate new data specific
to the needs of the risk assessment, e.g. distributions of TFIR which are specific to the species, crops and
regions being considered. These might be generated by field energetics studies of focal species to quantify
distributions of FMR, and the assimilation efficiencies and energy contents of relevant food types.
Alternatively it might be possible to measure TFIR directly in field studies, for example using radio-
telemetry and/or video recording at feeding sites or nests, though this would be very difficult. If short-
term exposures were critical, then it would likely be desirable to obtain specific field data on the
frequency of gorge-feeding. TFIR for medium/long-term scenarios might take increasing account of
diurnal and day-to-day variations, and how these differ between species and with environmental

conditions (e.g. season). Other sources of variation such as age or sex could also be evaluated.

Further research is required to refine methods for estimating TFIR and its variability. Limitationsexist in
the use of currently available predictive equations for metabolizable energy demand and assimilation

efficiencies of homeotherms for the following reasons:

$ Only alimited range of species have been examined. The mammal database used by Nagy (1987)

contains many marine mammals and breeding sea birds, but few nonrodent small mammals (e.g., no
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shrews or voles) and few nonbreeding nonpasserines. Later work with mammals (Nagy 1994)
expands the database to 61 species from 46 species, and includes additional small nonrodent mammals
(e.g., bats), and

» Therearelimitationsin sample size for certain body weights of animals, thus biasing regressions
dightly.

Methods for combining the components of TFIR (FMR, metabolic efficiency and dietary energy content)
need reviewing and refining, to take more account of the variability contributed by each component, and
to take account of mixed diets. A literature review should be conducted to collate all existing data on
TFIR in birds and mammals, such as the database being developed by the California EPA (Donohoe et .
1997). TFIR distributions for focal species should be developed as aresearch effort. Finally, thereisa
need for better information on short-term exposure in the wild (e.g., meal size, gorging behavior) to

match to effects testing with short intervals (e.g., LD50 studies with single bolus oral gavage dosing).

3.3.5 PD-Proportions of Different Food Typesin the Diet

The proportion of diet from each food type k , PD,,, is used in Equation 3.3-7 to denote that animals can
consume a varied diet, such as a combination of insects, fruits, seeds and vegetation. The parameter PD,,
may vary from 0 to 1 with the sum of all PDsequal to 1. The purpose of including this parameter isto

evaluate the potential impact of shifting diets on estimates of TFIR and exposure.

Dietary data may be found in the scientific literature in studies of animal food habits or foraging patterns,
which are broadly available in journals of ecology, conservation and wildlife management or summary
references such as Life Histories of Birds (Philadelphia Academy of Sciences, various authors). The
USDA Biologica Survey database on avian feeding habits contains >250,000 stomach sample records
from >400 native North American bird species collected from 1885 to 1950. These data are summarized
in USDA documents (e.g. Beal 1915) and by Martin et a. (1951). Diet or food habits may be reported as

fresh or wet food, dry matter, or volumes, so attention to standardizing the units is important.

In screening assessments, point estimates may be used in the exposure assessment and may be based on

existing information on animal diets. A conservative assumption might be to assume the diet consists
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entirely of one readistic food type with the highest residue. For example, based on seasonal summaries of
food habitsin Martin et a. (1951), a breeding Canada goose would be assumed to consume 100%
vegetation (with residues of 240 ppm per |b/acre applied), but no seeds or insects (with residues of 15 or
135 ppm per Ib/acre applied). A breeding American robin would be modeled as consuming 100% small
insects (135 ppm per Ib/acre applied), but no fruits (15 ppm per Ib/acre applied). The assumed
concentrations are based upon the Fletcher et al. (1994) modifications to the Kenega nomogram..

In more refined assessments, hypothetical distributions of PD; could be developed in the exposure
assessment by selecting means and standard deviations from data from the literature. A sensitivity
analysis could be performed at this level to examine possible extremes due to individual differences and
temporal/spatia variation. For example, breeding American robins are characterized as consuming 2
dietsin spring: approximately 79% animal matter and 21% plant matter, both with an approximate
variation of 5% (Martin et al. 1951). A hypothetical distribution of proportion of animal matter in the
diet can be generated based on several assumptions: normal distribution, mean of 0.79 and SD equal to
the square root of 5% (0.22).

Empirical or fitted distributions of PD, could be developed with data from individual birds or from species
studies, if available. Accessto origina data would be needed. Wheelwright (1986) summarized the U.S.
Biological Survey stomach samples for >1,900 American robins and found that diet was influenced by
severa factors: month, region, time of day, decade of collection, age, but not gender. Wheelwright
(1986) reports that awide range of plant and animal species were consumed, but identified no more than
6 distinct food types in robin stomachs. This database could be used to devel op distributions of diet
proportions for specific geographic or temporal scenarios (e.g., pesticide application timing in eastern

fruit orchards).

To further refine the assessment, field research would be needed to quantify distributions of PD for
particular species and conditions relevant to the scenario under consideration. Also, PD might be refined
to take account of differences in the mix of food types available in different fields, and changes over time.
Such variation occurs naturally. It can also occur as aresult of pesticide application; for example an
insecticide application may reduce the availability of insect prey but not that of seed or herbage. Itisto

allow for such differences that PD is alowed to vary between fields and over time in the full exposure
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model (Equation 3.3-5). Estimating PD separately for each field or habitat type would provide a more
precise risk assessment, but in practice such detailed information will be very difficult to obtain. It would

therefore only be sought where it appeared critical to the assessment outcome.

It is important to note that the classification of food types needs to take account of their potential content
of pesticide residues. For example, as small seeds typically contain higher levels of residues than large
seeds (Fletcher et al.1994), separate estimates of PD are needed for small and large seeds. There may be
aneed to differentiate different sources of the same food type within the field. For example, in adense
growing crop, small insects from the crop canopy are likely to contain much higher residues than small
insects from the soil surface. Also, dead invertebrates may contain more pesticide than live ones, and may
be more (or less) likely to be eaten. These complications could be increasingly taken into account at in

refined assessments.

Some predatory animals feed on vertebrate prey, which may themselves have been exposed and contain
pesticide residues. Exposure of predators in this way is sometimes referred to as secondary exposure.
Given the high intrinsic toxicity of many insecticides and rodenticides, it is feasible that there may be a
secondary risk to predatory birds and mammals (L uttik et al. in press). There also may be arisk to
scavengers feeding on dead rodents or other animals. Estimates of the proportional composition of
specific prey items may be developed with the same approach as given above, with the initial assumption

of feeding specialization (PD = 1) in screening assessments.

Finally, it is recommended that existing data on diets or food habits of focal species should be compiled in
asingle database, to facilitate future use of standard distributions by species and other significant sources

of variation.

3.3.6 FDR —Fresh todry weight ratio.

FDR is used to convert dry weight food intake (TFIR) to wet or ‘fresh’ weight. Thisis necessary to make
the estimates of food intake consistent with estimates of their pesticide content (C, see below), which is
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generally reported as mg pesticide per kg fresh food material (leaves, stems, fruits, vegetables,
invertebrates, etc.). For example, the water content of fresh leafy and grassy vegetation is approximately
60% to 85%, such that dry matter would be 15% to 40% (Tiebout and Brugger, 1995). Thus 1 kg of
fresh vegetation might have a dry content of 0.15 kg, in which case FDR would be 1:0.15, i.e. 6.7. A
summary of typical FDRsisgiven in Table 3.3-2, on a per unit weight basis (per kg or per Ib diet).
Additional dataon FDR for small insectsis available from data of Fischer and Bowers (1997) and Brewer
et al. (1997).

Table 3.3-2. Summary of fresh to dry weight ratios (FDRs) for common wildlife food items.
Food type Dry matter (%) Fresh to dry ratio FDR
Leafy, grassy 15-40 1:0.15--1:04 6.710 2.5
| vegetation
Small Seeds, grain 85 1:0.85 1.17
Small Fruits 8—-46 1:0.08 —1:0.46 125-22
Insects 15-25 1:0.15-1:0.25 6.7—-4
M eat 20 1:0.2 5

In screening assessments, point estimates may be used in an exposure assessment and may be based on
existing information in the literature for relevant food types. A conservative assumption would be
assume the diet consists of one food type with the highest fresh to dry weight ratio. In the case of
breeding American robins, a conservative assumption would be to focus on consumption of small fleshy
fruits with an FDR of 12.5.

In refined assessments, one could develop hypothetical distributions based on means and standard
deviations from the literature, with selection of distributions based on best judgement. A sengitivity
analysis could be performed to identify and assess significant sources of variation. Alternatively, empirical
or fitted distributions could be developed from data in the literature, if available. One might need access

to original datato account for sources of significant variation (e.g. individual or seasonal).
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To further refine the assessment, empirical distributions could be devel oped from field measurements
taken under relevant conditions. These field studies could be conducted in such away that the other

major foraging parameters are also obtained (PT, TFIR, PD, and FDR).

3.3.7 AV - Avoidance

There are many examples of animals responding to the presence of noxious chemicalsin their food by
reducing consumption. Chemicals which induce this response include a wide range of plant secondary
compounds which provide plants with a defense against herbivores (e.g. Buchsbaum et a. 1984).
Similarly, some insects contain chemicals which are repellent to birds (e.g. Brower and Fink 1985).
Many pesticides also induce reductions in consumption, as can be seen in the results of standard avian

dietary toxicity tests (see datain Hill and Camardese 1986) as well as research studies (e.g. Grue 1982).

These avoidance responses clearly have the potential to reduce the exposure of birds and mammals to
pesticidesin their food. A key question is whether these responses are effective in the wild aswell asin
laboratory tests: this has been confirmed for two pesticides. First, alarge number of field studies have
demonstrated that, when used as an avian repellent, methiocarb can reduce the losses of fruit cropsto
predation by birds (Dolbeer et a. 1994), which implies that the ingestion of methiocarb by individua
birds must be reduced to some extent. Second, surveys of fields sown with winter wheat in the UK have
demonstrated significantly lower numbers of feeding woodpigeons on fields where the seed is treated
with fonofos, compared to untreated fields (McKay et al., in press). Furthermore, it can be presumed
that plants and insects would not have evolved defensive chemicals unless they were effective. Itis
concluded that avoidance can be important in reducing exposure, and hence should be given

consideration in avian risk assessment (OECD 1996).

Methods for assessing avian avoidance have been developed over along period, both for the purposes of
pesticide risk assessment (BBA 1993, INRA 1990) and to assess the efficacy of avian repellents (Mason
et al. 1989). Work to develop an OECD guideline for avoidance testing began at a SETAC/OECD
workshop in December 1994 (OECD 1996), and has since been continued through a series of informal
meetings at SETAC conferences. Industry associations have recently taken responsibility for producing a
draft guideline.
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The effect of avoidanceis represented as AV in the model for dietary exposure (Equation 3.3-7).
However, it is essential to remember that AV isafunction of C, because the extent of the avoidance
response generaly increases with increasing concentration of pesticide in the food. AV takes values
between 0 (no avoidance) and 1 (complete avoidance of contaminated food). Itisreiterated that AV isa
simplistic way of incorporating avoidance: a more sophisticated approach would be to make PDy,, TFIR,
and PD;, all functions of C;,, as mentioned in Section 3.3.1.

The principal difficulty in assessing the effect of avoidance on exposure is that the avoidance response is
highly variable, and is influenced by many factors (OECD, 1996). Quantifying this variation isadifficult
task which islikely to be reserved for the later stages of risk assessment. In earlier stages of assessment,
attention will focus on determining whether there is sufficient evidence of avoidance to be worth detailed

investigation. A more detailed discussion of AV isincluded in Appendix C2.

In a basic screening assessment and in cases where no information on avoidance is available, it should be

assumed that no avoidance occurs (conservative assumption). AV should therefore be set to 0.

A detailed assessment of avoidance requires non-standard data (A ppendix C2), which may be costly to
obtain. Itistherefore desirable to have a simple method of screening pesticides, to determine whether

they show sufficient signs of avoidance to make detailed assessment worthwhile.

For birds, the avian dietary test provides a convenient means of screening for avoidance. AV can be
estimated for each test concentration by dividing the food consumption of the test group by that of the
control group. Figure 3.3-3 illustrates this for fonofos using data from Hill and Camardese (1986). The
concentrations used in the test are unlikely to correspond to those predicted in the wild. However, for
the purposes of a screening assessment it will be sufficient to use smple linear interpolation to estimate
AV for the relevant concentrations, provided it is remembered that the results are approximate. Note that
in Figure 3.3-3 the calculation is made using consumption on the first day of exposure: this may be
considered as representing the response of a bird on the first day it encounters atreated field. Thisis
more conservative than taking data from later days, when the avoidance response is often stronger. In

some studies consumption may only have been measured over longer periods, in which case the first such

3-33



N

N o o1~ oW

period should be used. Caution is required to ensure that the consumption data are not biased by the
effects of food spillage, which can be substantia (especially with mallards).

Some test protocols measure the consumption of animals given access to untreated food as well as the
test diet (e.g. INRA 1990, Mason et al. 1989). If such studies are available they can be used to provide
an alternative estimate of AV, dividing the consumption of treated food by total consumption on the first
day of testing. Thisestimate islikely to represent a‘best case’ situation (maximum avoidance), especially
if the animals can readily detect which food istreated (e.g. if the foods differ in appearance

0.8 -

0.6 -

AV

0.2 - .-

0 100 200 300 4(
Concentration

Figure 3.3-3. Preliminary estimation of AV for screening purposes, using data from the avian
dietary toxicity test. AV isestimated as the reductionin consumption on the first day with treated
diet, compared to consumption by control groups fed untreated diet. Dataisfor fonofos, from
Hill and Camardese (1986). In this example, values of AV for intermediate concentrations are
approximated by linear interpolation. C; = concentrationin test diet, ppm.
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and/or presented in separate containers).

Estimates of AV obtained from tests with and without alternative food may therefore be used for
screening purposes, to assess the potential contribution of avoidance to reducing risk. If they indicate
that avoidance may be important in reducing risk below the level of concern, then further studies are
likely to be needed to confirm whether the response will be effective in the wild. The types of studies
which are appropriate differ for short-term and long-term exposures. For short-term exposures, no-
choice feeding studies are appropriate and attention is centered on the rate at which animals feed. For
longer term exposures, attention centers on the availability of alternative foods and the ease with which
the animal can distinguish contaminated and uncontaminated foods, so feeding studies with an element of

choice may be appropriate.

No standard test method yet exists to obtain refined estimates of AV, and the design of such studiesis
still the subject of research and discussion. In the meantime, studies will have to be designed case-by-case
to meet the needs of the individual risk assessment. Factors which need to be considered are discussed in
detail in OECD (1996), and possible approaches based on more recent research are discussed in
Appendix C2.

An alternative to tests with captive birds might be to investigate the influence of avoidance on exposure
and effectsin the field. However, thisis unlikely to be redlistic for regulatory purposes. Bird foraging
behavior is so variable that it is difficult to detect avoidance of treated areas, even when it is contributing
significantly to reducing exposure (McKay et a. in press). Furthermore, the conditions under which
avoidance breaks down and causes mortality may be relatively rare, and would be unlikely to appear in
field studies unless they were repeated on alarge number of sites. Thusfield studies are unlikely to be

effective either in demonstrating avoidance, or in determining how reliableit is.

In summary, the considerations above suggest the following approach:

. Basic screening assessments should assume no avoidance (set AV equal to 0).

. If the assessment indicates the potential for significant exposure, then data on food consumption
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in dietary toxicity tests may be used to provide screening estimates of AV. These can be used for
both short-term and longer-term exposures. However, they should be used solely to indicate
whether there is potential for avoidance to reduce exposure, and should not be relied upon in a

definitive assessment of risk.

. If the screening assessment indicates potential for avoidance to significantly reduce exposure, then
adetailed assessment isrequired. (See Appendix C2 for further details.) Idedly this should aim
to quantify the distribution of AV inthewild. For short-term exposures (minutes to hours), it
may be possible to do this by combining data on the distribution of feeding ratesin the wild with
laboratory tests of the degree of avoidance at different feeding rates. For longer-term exposures,
it may not be practical to obtain adistribution for AV as it depends on the ability of animalsto
discriminate between contaminated and uncontaminated foods. Instead, the best solution may be
to obtain point estimates for AV under realistic conditions but tending towards the conservative

side.

. Further research is required to refine and validate approaches to assessing avoidance.

3.3.8 C —Residuesin Food

The pesticide concentration on/in foliage and insects will depend on numerous factors including the
numbers and rates of application, the intervals between applications, spray drift, rates of foliar growth,
foliar and insect surface area, and the rates of degradation, volatilization, depuration, uptake and washoff.

Currently, immediate post-application pesticide concentrations on/in foliage are generally estimated from
the Fletcher et al. (1994) recommended modifications to the Kenaga nomograph. Further datafor seeds
have been produced experimentally by Edwards et a. (1999). In addition, the Kenaga/Fletcher data have
been used to estimate residues on insects, by assuming that these will be similar to residues on seeds of

similar size (on the expectation that residue load will be governed by surface area to volume ratio).
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Immediate post-application concentrations as well as dissipation rates for various pesticides on insects
can be obtained more accurately from the literature review of Fischer and Bower (1997), and from
studies conducted by Brewer (1997). Dissipation rates for various pesticides on foliage can be obtained
from the Willis and McDowell (1986) paper.

Estimates of initial foliar residue levels and foliar dissipation rates can be used as inputs to computer
models to estimate foliar residue levels as afunction of post-application time. (See Section 3.10 and
Appendix C4.) Alternatively or for purposes of model validation and calibration, foliar residue levels at

various times post-application can also sometimes be obtained from lab and/or field studies.

For vertebrates, models that estimate body burden as a consequence of uptake (dietary exposure) and
depuration (from poultry or rat metabolism studies) will be needed.

Residues in foods ingested by animals may therefore be estimated at different levels of refinement, with
increasing attention to reduce uncertainty. For screening assessments, estimates of initial residues and
dissipation rates may be generated for categories of food types based on existing residue data, using the
sources cited above. Usually, conservative estimates of residues (e.g. ‘maximum’ values) and dissipation
(minimum) will be used asthefirst step. ‘ Typical’ or average values could be used as a second step, to
assess whether the influence of C on the risk assessment outcome is large enough for it to be worth

assessing in more detail.

In refined assessments, distributions should be used in place of point estimates, if possible, for both initial
values and dissipation. It may be possible to simulate these using confidence intervals from published
sources or by obtaining access to the origina data on which ‘typical’ and ‘maximum’ estimates were
based. Alternatively, estimates of distributions may be available from new models of initia residues and
dissipation over time. Examples of generating hypothetical PDFs for initial foliar residues, foliar and soil
dissipation rate constants and soil/water partition coefficients are provided in Section 3.11. Examples of

generating experimental CDFs for initia invertebrate residues are also provided in Section 3.11.
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To further refine the assessment, field data could be used to validate and / or calibrate models and to
obtain distributions of C at different points in time under conditions relevant to the scenario under

consideration.

339 W-BODY WEIGHT

Body weights in mammals and birds may vary by time of day, seasonally, geographically, and by age or
sex class (Clark 1979). Estimates of body masses for mammal and bird species, subspecies, and regional
populations may be found in severa sources. Two handbooks summarize globa databases of body
masses of mammals (Silva and Downing 1995) and birds (Dunning 1993) by species, sex and collection
location. Sample size, arithmetic mean, range and standard deviation are provided when available.
Taxonomic references, such as Walker’s Mammals of the World (Nowak 1991) and Life Histories of
Birds (individua species reports published by Philadel phia Academy of Sciences) provide complementary
data. Species specific publications on topics such as physiology, nutrition or energetics may include
arithmetic means and SDs of body mass. It is possible to contact authors to request primary data that can

be used to develop distributions for use in probabilistic models.

Note that W is often used in estimating TFIR as well as being present in the denominator of the dose
eguation. This has two consequences. First, it will tend to cancel out to an extent (but not completely,
due to its non-linear relationship with TFIR), so that W will have less influence on exposure than other
variables. Second, in aMonte Carlo smulation, values of W should be sampled only once per iteration,
and the same value should then used both for estimating TFIR and as the denominator of the dose
eguation.

In screening assessments, point estimates of arithmetic mean, range and standard deviation may be
obtained from the mgjor references. It can be assumed that body massis distributed normally. If ranges
are available, one could assume that the low and high values are the ends of the distribution, thusit is
truncated. An example is given for American robins (Turdus migratorius). Dunning (1993) reports no
sexua dimorphism in body mass. Mean body mass of 401 adult males and females from Pennsylvaniais
77.3 9 + 0.36, ranging from 63.5 to 103.0 g.
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In refined assessments, distributions may be derived from descriptive statistics and assumptions about
distributions (truncated, normal). This could be expanded to include variability associated with
geography, season, age or sex if these data are available and are considered significant sources of
uncertainty in the models. For example, the distribution of body masses of American robins collected in
February 1991 in Florida differed between age classes (Brugger, 1993). On average, third-year birds
(n=15, mean = 83.9 g + 8.9, range 64.5 — 95 g) were heavier than second-year birds (n=44, mean = 78.3
g + 7.8, range 63.5 — 96 g), although the ranges of weights were similar. Where the raw dataare
available, empirical or fitted distributions can be used. To refine the assessment still further, site- or

condition- specific distributions could be obtained in field studies.

3.4DOSE RESULTING FROM INGESTION OF CONTAMINATED WATER

The Terrestrial Workgroup devoted only a small amount of time to development of probabilistic tools for
estimating wildlife exposure viaingestion of water. Thisroute of exposure is rarely considered in current
pesticide risk assessments and is generally not considered a magjor route for most pesticides. The
methodology proposed is an extension of that presented for food, in which Water Ingestion Rate (WIR)
replaces Food Ingestion Rate (FIR) and the concentration in water replaces the concentration in food in

the dose equations.
3.4.1 Dose Equationsfor Ingestion of Contaminated Water

The one day drinking water dose for any day i, the cumulative drinking water dose over N; days and the
average daily drinking water dose over N, days a bird or mammal receives through ingestion of pesticide

contaminated drinking water in one or more fields j per day are given respectively by:

j;Ni png
One Day Dosewaer (dayi) inmg/ kgBW*day=a a WIR;jpCipp /W

j=1 p=1

(Eq. 3.4-1)

i=Ni j=Nj p=Np
Cumulative Dosewae (Over Ni days) in mg/ kg BW = é a é WIR;pCijp / W

i=1 j=1 p=1

3-39



© 00 N o o1 b~ W

10
11
12
13
14
15
16
17
18

19
20

21

22
23
24
25

(Eq. 3.4-2)

Average Daily Dosg, . in mg/lkg BW*day = Cumulative Dose, /N, (Eq. 3.4-3)

where,

p= index for different water sources (e.g., dew, puddles, pond)

N, = maximum number of different water sources consumed by the bird or mammal (generally dew,

puddles, pond = 3)
] = index for different foraging fields
N = maximum number of fields foraged by the bird or mammal over the foraging time interval of
interest for which adose is to be computed
i = index for different foraging days
N, = number of days during the foraging interval of interest for which a dose is to be computed
WIR;,= water intake rate (L/day) of water source type p consumed by the bird or mamma infield j on

day i (WIR,, = 0if the bird or mammal isnot infield j on day i or is= 0 for puddles and/or the

ijp

pond if the field does not have puddies on day i and/or does not have a pond)

Cip= initial or average pesticide concentration in water source type p in fieldj onday i (mg
pesticide/L of water). If thefield j has not been treated or received spray drift by day i,
Ci,=0.

W= body weight of the bird or mammal (kg)

By analogy to equation *** for the food intake rate, the water intake rate of water source type k by abird

or mammal infieldj onday i isgiven:

WIRjp = fip(TWIR)( PWijp) (WAVijp) (Eq. 3.4-9)
where,
fi = fraction of total water obtained from field k on day i (dimensionless)

TWIR, = total water ingestion rate = total drinking water consumed on day i (L/day)

PW,,=  proportion of water obtained from field j on day i that was derived from water source type p
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WAV, = avoidance factor for water source typej in field k on day i = fraction of water from source
type p that would normally be consumed in field j on day i if the water was not contaminted at

a contaminant level of C.

i» (dimensionless); The avoidance factor is a function of the

contaminant levdl.

Methods for estimating TWIR, PW in water are discussed in the following sections. Methods for
estimating f and WAV have not been developed, however, the anal ogous values for food presented in
Section 3.3 are reasonable first tier estimates for these variables. Factors that influence pesticide

concentrations in water are discussed here aso, but see Section 3.10 and Appendix C4 for greater detail.

3.4.2 Estimation of Total Water Ingestion Rate

The EPA Wildlife Exposure Factors Handbook contains estimates of the water ingestion rates for
representative species of birds and mammals. Drinking water is but one way animals meet their water
requirements. Some water is produced as a product of metabolism. Water is aso contained in food.
Species differ in their need to take in additional water by drinking. In the absence of species-specific
estimates of drinking water intake, the EPA Wildlife Exposures Handbook recommends the use of
allometric equations derived by Calder and Braun (1983), as follows.

For birds,

Total Water Ingestion Rate (L / day) = 0.059W°%’ (Eq. 3.4-5)
For mammals,

Total Water Ingestion Rate (L / day) = 0.099W°*° (Eq.3.4-6)

In the above equations W is body weight in kg. If necessary, values derived from the above equations
may be normalized by dividing by body weight. The units of the resulting estimate become L water/kg
BW*day, which is equivalent to g water/g BW* day.
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3.4.3 Proportional Intake from Different Sour ces of Water (PW)

Three genera categories of sources of water are dew, puddles and ponds. The Terrestrial Workgroup
did not identify any studies that estimated proportional use of these sources of water by wildlife. The
proportion of drinking water obtained from these sourcesis likely highly variable among species,
individuals and field locations. It islikely that each of these routes predominates for at |east some species
under some field scenarios. One might conduct three independent assessments assuming in turn that all
drinking water comes from dew, then puddles, then ponds, and determining the range of exposure values
obtained and whether any of these values could contribute to a significant proportion of total oral
exposure. If therange in variation or the contribution of water to the total dose received by the animal
was small, further work to clarify PW would not be justified. However, if one source could potentially
contribute a significant dose (e.g., drinking of dew drops on spayed vegetation) than the frequency of use

of this source by the species of concern may warrant further investigation.

3.4.4 Pesticide Concentrationsin Water

Pesticide concentrations in water will depend on numerous factors including application rates, spray drift
and runoff/erosion loadings to the water, concentrations in soil and on foliage coupled with the
magnitudes of soil/water and foliage/water partition coefficients, rates of water evaporation and
infiltration, rates of degradation in water and volatilization rates from water (which depend in part upon

the magnitude of Henry's Law constant).

Values of soil/water partition coefficients, Henry's Law constants, abiotic hydrolysis rates, direct
photolysis rates, and sometimes combined abiotic/microbiologically mediated degradation rates in water
can be obtained from fate studies commonly conducted by Registrants and submitted to OPP. Many such
values are listed in the ARSUSDA and the OPP fate and chemical property databases.

More detailed discussions of methods to estimate pesticide concentrations in water are presented in
Section 3.10 and Appendix CA4.
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3.5 DOSE RESULTING FROM INGESTION OF GRANULES

3.5.1 Overview of Granular Pesticide Exposureto Wildlife

In addition to direct ingestion of granules, wildlife may be exposed to granular pesticides through nearly al of
the routes presented earlier in Figure 3.1-1. For example, oral exposure can occur via (1) ingestion of residues
transported from intact granules to food, water or soil, (2) ingestion of residues on feathers or pellage during
preening/grooming activity, (3) dermal contact with residues in/on soil, vegetation, water and the granules
themselves, and (4) inhalation of volatilized molecules. Exposure to granular pesticides via these routes can be
assessed using the same methods as discussed for flowable formulations. However, exposure levels via these
routes will typically be much lower than for a flowable formulation because in the case of a granular
formulation, the vast mgority of the chemical that is applied remains adhered to the granules. The
biocavailability of the chemical is therefore relatively low unless the granules themselves are ingested.
Consequently, the direct ingestion of granules has been considered the primary route of exposure of wildlife to
granular pesticides (U.S. EPA 1992, Best and Fischer 1992).

Granules may be ingested accidentally in the course of birds probing for or pecking at food in or on treated soil,
or they may be ingested intentionally by animals that mistake them for grit or food. Of the commonly used
granular carriers, only corncob granules seem likely to be mistakenly ingested as food (Best 1992, Best and
Fischer 1992, Stafford and Best 1997). Exposure assessment for granular products formulated on corncob
carrier should follow the methodology presented earlier for contaminated food (Section 3.3). In performing
such an assessment, a key parameter that must be estimated is the proportion of the diet composed of corncob
granules (PDy,,e). This may be assumed to be some fraction of the total fraction of the diet composed of
seeds. A method for estimating PD,, is discussed in Section 3.5.3.

For al other granular formulations (i.e., formulated on carriers such as clay, silicaand gypsum), which includes
the vast mgjority of granular pesticide products currently in use, the primary route of exposure is thought to be
ingestion of granules accidentally or intentionally as grit. The workgroup devoted considerable time to the
development of a probabilistic model of this exposure route. The steps taken in devel oping a working model
are described in the following sections. The model focuses on birds because birds ingest more grit than
mammals and are therefore more likely to ingest granules. Birds use more grit because they lack teeth and
therefore must ingest grit to aid in the grinding of hard foods in their gizzard. A more detailed description of
the new model, GEM (Granule Exposure Model), isin Appendix C3.
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3.5.2 Review of Existing Assessment M ethods

OPP currently uses a hazard index approach (L D50s/ft?) to characterize risk of granular products. The
exposure component (pesticide load available per square foot) is an estimate of residues present in the
animal’s environment. This residue load may be an index to wildlife exposure (i.e., as the index increases, so
may exposure), but it is not an estimate of chemical intake per se and it cannot readily be used
probabilistically.

Recently, attempts have been made to estimate ingestion rates of pesticide granules using individual-based
probabilistic modeling. Abt Associates Inc. (1996) used such amodel (Abt model). The Abt model assumed
that (1) birds seek out and ingest on a daily basis a certain number of grit particles and that (2) granules
present within the birds' foraging space have the same chance of being selected as natural grit particlesif they
are within the size range of the grit used by the species under consideration. The studies of Best and
Gionfriddo (1991), Best (1992) and Gionfriddo and Best (1996) were used to determine the amount and size
range of grit that species of birdsingest daily, and the overlap in the size of grit used versus that of applied
pesticide granules. The availability of granules was estimated from the application rate and assumptions
regarding soil incorporation by application machinery. The availability of natural grit particles of various size
classes was estimated from soil texture data available from the USDA Soil Conservation Service. The Abt
model also included a granule preference factor whereby the probability that a bird selects agranulevs. a
natural grit particle could be increased or decreased if data were available regarding the relative attractiveness
of the granule type in question. Because such data were lacking, this factor was set equal to 1 (meaning birds
exhibited no preference or avoidance of granules). A Monte Carlo simulation approach was used to estimate
the range of exposure levels for different individuals of the species under consideration. For each individua
bird in the smulation, the model determined the number of granulesingested in one day. By taking into
account the pesticide load of each granule (i.e., the % active ingredient multiplied by the average granule
mass), the number of granules ingested was converted into an estimated pesticide dose (mg Al/ kg BW/ day).
The Abt model assessed exposure levels over a single day immediately after application.

Dixon et al. (1997) recently developed an individual-based, probabilistic model (Dixon model) that also used a

Monte Carlo approach to estimate pesticide exposure levels and resulting effects from the
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ingestion of granules as well as from other routes. Instead of modeling granule ingestion as a
probabilistic function of availability of granules vs. other grit particles, granule ingestion rate was
estimated by fitting a probability density function to actual field measurements of granule ingestion rates
by birds (Fischer and Best 1995). A granule preference factor component allows for adjustment of the
ingestion rate if there is evidence to show that the granule type being considered is selected by birds at a
different rate than the granule type that was used in the field study. The model used a daily time step to
assess exposure levels over multiple days and so included components that account for loss of pesticide
from the granule with time, and pesticide metabolism and excretion after ingestion. The model calculated
pesticide body burden through time and resulting fate (i.e., survival vs. mortality) for each individua of a
theoretical population. The Dixon Model is discussed in greater detail in Appendix A3.

3.5.3 Conceptual Model for Granule Exposure Assessment

The Abt and Dixon models were developed independently and each contain useful features. To construct
amore definitive modeling tool, a conceptual model of factors that potentially influence avian ingestion of
pesticide granules was developed (Fig 3.5-1). The Abt model’ s approach of modeling granule
consumption as probabilistic function of availability of granules vs. other grit particles was chosen over
the Dixon model’ s approach of fitting a probabilistic density function to observations obtained in an

actual field study in order to make the model applicable to awider range of field conditions (e.g., soil
types) than those evaluated in the Fischer and Best (1995) field study. If the conceptua approach to
modeling granule ingestion behavior adequately represents this process as it occurs in the real world, it
should be possible to model the field conditions studied by Fischer and Best (1995) and derive predictions
of granule ingestion rates for birds that are reasonably close to those actually observed. Thus, the actual

field study results can provide a“reality check” for modeling tools developed from this conceptua model.

The conceptual model may be subdivided into four sections. Section 1 includes factors that affect the
relative availability of granules and natura grit particlesin abird’ s environment. From these factors, the
availability ratio of granulesto natural grit particlesis estimated. In Section 2, the ratio of granule
availability is considered with other factors (such as preference/avoidance of certain granule types) to
estimate the expected probabilities that a particle selected by an individual bird will be agranule vs. a
natural grit particle. In Section 3, the number of grit particles ingested per unit timeis estimated. This
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Fig 3.5-1. Conceptual Model of Bird
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determines the number of times a bird selects a grit particle from its environment. From the outputs of
Sections 2 and 3 the model derives an estimate of the granule ingestion rate. Section 4 includes factors
that may modify the pesticide content of granules over time. Combining the output of Section 4 with the
granule ingestion rate yields the pesticide ingestion rate, which is of course the desired output of the
model. There are also feedback loops (dashed arrow lines) in which pesticide exposure produces
sublethal intoxication which may lead to areduction in grit use and/or a change in the probability for birds

to ingest granules through a learned avoidance mechanism.
The underlying assumptions and theoretical basis for the model become more apparent as one considers
the key parameters being estimated in more detail. Key parameters are discussed beginning with the

“bottom line” output and working back through the various inputs.

Pesticide ingestion rate from granules (PIRG): Thisisthe overall output of the model, expressed in mg

pesticide ingested per kg body weight per unit time. PIRG is afunction of the Granule Ingestion Rate
(GIR) and the pesticide concentration in granules (Al) at the time period of interest. PIRG may then be
added to exposure via other ingestion routes (e.g., viafood or water) to calculate atotal estimated

ingestion exposure, which in turn may be integrated with toxicity information to predict risk.

Granule Ingestion Rate (GIR): Thisisthe number of granules a given individual bird ingests over the
period of time of interest. GIR is estimated from the estimate of the number of particles the bird ingests
as grit during the time period of interest that are in the same size range as granules, and the estimated
probability that a particle in this size range that is being ingested will be a granule as opposed to a natura
grit particle. Grit ingestion is modeled as a series of binomial trials. Each particle being ingested
represents onetrial. In each tria, the bird may ingest either agranule or anatural grit particle. The total
number of granules ingested by an individual bird during a given time period becomes a function of the
probability of ingesting a granule (p), the probability of ingesting a natura grit particle (g), and the
number of trials occurring in that time period (N). The parameters p, q and N define a binomia
distribution from which arandom sampleis drawn to estimate GIR for an individua bird (iteration), and

the process may be repeated over many iterations to obtain a distribution for GIR.
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Pesticide concentration of granules (Al): The pesticide concentration of granules will initialy be the

concentration formulated into the product, but may change over time as the result of degradation (e.g.,
photolysis, hydrolysis, biodegradation) or transport loss (e.g., volatilization, diffusion, washoff by rain).
Equations for estimating pesticide concentrations in granules over time are discussed in Appendix C3

along with other components of the GEM Modéel.

Total particle ingestion rate (TPIR) and N: Tota particle ingestion rate (TPIR) is ssimply the number of

particles, including both naturally occurring grit and pesticide granules, ingested as grit per unit time.
This may be estimated probabilistically for a number of avian species from the gizzard grit count data
compiled by researchers at lowa State University (Best and Gionfriddo, 1991, and Best unpublished)
after applying a conversion factor to convert gizzard counts to a daily consumption estimate (see Fischer
and Best, 1995). A randomly drawn observation from this data set may be used to establish the number
of particles an individual bird is*programmed” to ingest in agiven day. However, only some of the grit
used by birdsis of the same size range as pesticide granules. If one assumes that birds only may select a
granule when they are seeking a particle within the size range of granules, then the number of occasions
inagiven day in which abird could ingest agranule is TPIR multiplied by the fraction of particlesin the
same size range as granules. The resulting value is equivaent to N, the number of binomia triasin which
agranule could be selected.

Many applications of granular pesticide are not uniformly made to the entire field, but rather are put
down in narrow bands. In such cases, separate estimates of N are desirable for each zone of the field with
adifferent probability of selecting agranule (p). For example, the probability of selecting a granule may
be very high (99%) for abird foraging in a spill area, small (1%) for a bird elsewhere within the “normal”
pesticide band, and nill (0%) for a bird foraging between the bands. The number of particles a bird
obtains from each of these zones may be assumed to be a function of their relative size and attractiveness
asforaging habitat. (See Appendix C3 for example calculation.) The degree of attractiveness or
preference of birds for specific field zones may in some cases be estimated from actual field data (e.g.,
Best et ., 1990). However, these estimates may have to be made in many cases on the bases of expert

opinion.
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Probability of ingesting granules (p) and aternative particles (Q): These are binomia probabilities that
are based on (1) the relative availability of granules and natural grit of similar size, (2) the preferences
birds may have for granules or natural grit when they select particles, and (3) the proportion of all grit
consumed that is intentionally selected as opposed to ingested accidentally/incidentally during feeding.
The estimation of p and g is simplified if the assumption is made that birds have no preference for
selecting granules vs. natural grit particles. Inthis case, p, and q are calculated directly from estimates of

relative availability of these two particle types, as follows:

_ Availability of Granules
~ Availabilityof Granules+ Availabilityof Natural Grit

P (Eg. 3.5-1)

_ Availabilityof Natural Grit _
~ Availabilityof Granules+ Availability of Natural Grit

q 1- p (Eg.352

where it is understood that Availability of Natural Grit refers here only to particles in the same size range

as granules.

Several studies have demonstrated that birds may use some granule types as grit more readily than others
(Best and Gionfriddo 1994, Best et al. 1996). This may have alarge influence on exposure levels
(Stafford et al. 1996, Stafford and Best 1997). Preference/avoidance of various granule types may be
accounted for by introducing the Granule Grit Preference factor (GGP) into the following equation,
relating the probability of ingesting a granule to the probability of ingesting a natural grit particle (Abt
Associates 1996).

- GGP (Eq. 3.5-3)

p Availability of Granules
1-p Availabilityof Natural Grit

GGP isadimensionless number that relates the frequency that birds given equal access to granules and
natural grit select granules. If abird had no preference or aversion to pesticide granules compared to
natural grit, GGP = 1, because 1 granule isingested for every 1 natural grit particle ingested. If abird
preferred granules to natural grit, then GGP would be >1, and if abird preferred natural grit to granules,
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then GGP would be <1. For example, if birds were shown through empiracle tests to prefer natural grit
over granules by a 3:1 margin, then GGP would be defined as 0.33. (0.33 granules selected for every 1
natural grit particle selected).

By solving for p, equation 3.5-3 may rewritten as.

_ GGP* Availability of Granules
~ Availabilityof Grit+ (GGP* Availability of Granules)

p (Eq. 3.5-4)

The probability of selecting a natura grit particle () is then obtained by subtraction:

q=1- p (Eq. 3.5-5)

The above equations may be used to define the probabilities that bird will select a granule or natural grit
particle. These probabilities vary depending upon where the bird is foraging, since availability of granules
vs. grit changes in different zones of afield and between fields with different soil types. P and q aso vary
depending upon whether a particle is being ingested intentionally as opposed to accidentally. Note that
for a particle ingested accidentally, by definition no preference/avoidance occurs, GGP therefore equals 1,
and equation 3.5-4 reduces to equation 3.5-1.

A dlight modification of Equation 3.5-4 may be used to estimate the probability that a bird will mistakenly
ingest a corncob granule instead of aseed. As previoudly discussed, pesticides formulated on corncob
granules may be consumed mistakenly as seeds and exposure via this route can be estimated using
methodology presented in Section 3.3 for contaminated food if one can estimate the proportion of the
bird's diet that corncob granules comprise (PD.,0). Thiswill be afraction of alarger fraction of the
diet which is made up of seeds. The probability that a bird foraging on afield where granules have been
applied will mistakenly ingest a corncob granule instead of aseed is:
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_ GSP - Availability of Granules
P Availability of Grit + (GSP- Availability of Granules)

(Eq. 3.5-6)

where GSP (Granule:Seed Preference factor) is a preference factor relating the probability a bird will
select agranule over aseed if accesswasequal. PDg,,,. the corncob granule fraction of the diet may

then be estimated as:

PDgranuie = PDseeds - P (Eg. 3.5-7)

Once PD 4, IS estimated, assessment of dietary exposure to pesticides formulated on corncob granules

may proceed using the methodology presented in Section 3.3.

Granule to Grit ratio (GGR): The availability of granulesin relation to natural grit particles is assumed

to be a key factor in determining granule ingestion rate. Factors that affect this ratio include the number
of granules applied per unit area, the efficiency of the application equipment in incorporating granules
beneath the soil surface, the spatial zone being considered (e.g., spill areavs. “norma” pesticide band
area vs. outside the pesticide band), the integrity of the granule carrier under field conditions (some
granular carriers disintegrate upon contacting moist soils), and the soil texture profile (i.e., amount of
sand in the size classes used by birds as grit). Two additional factors that influence granule and grit
availability are rainfall and crop residue cover. Rainfall has been shown to reduce availability of granule-
sized particles on the soil surface (Fischer and Best 1995). The presence of crop residues obscures and
limits birds accessto part of the soil surface of afield, and therefore may also in effect reduce grit
availability. These two factors were left out of the model because we assume these factors affect the

availahility of both granules and natura grit equally, and thus do not influence GGR.

3.5.4 Implementation of the Conceptual Model: Development of GEM

A new modeling tool caled GEM (Granule Exposure Model) was developed from the conceptual model
presented above. GEM was developed using the Abt model as a starting point. However, significantly
expanded and refined databases concerning grit use of birds and availability of natural grit particlesin

different soils have been collated and incorporated. GEM simulates grit consumption behavior of
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replicate individual birds of a given species living in the vicinity of an agricultura field where a granular
pesticide has been applied. The number of pesticide granules and resulting quantity of pesticide ingested
each day over a 10-day period immediately post-application is calculated for each individua in the
simulation. Thisis performed probabilistically through the use of Monte Carlo software programs Crystal
Ball or @Risk which operate as add-ins to spreadsheet programs such as Microsoft Excel and Lotus 1-2-
3. Assumed or actual distributions of data are used as inputs for the following model parameters. number
of grit particlesingested by birds on adaily basis, field use factor by birds (analogous to PT in the dietary
dose equation), soil texture type, fraction of soil particles at afield with a given soil type that are in the
size range of granules, and fraction of granules remaining on the soil surface immediately after
application. Separate analysis may be performed for 29 bird species and 10 different geographic regions
of the U.S. The moddl output is a probabilistic distribution of peak-day pesticide exposure levels (dose
from granules) expressed in mg pesticide per kg BW per day for birds of a particular species within a
particular region. Such a probabilistic distribution of exposure could be integrated with dose-response
information to predict the percentage of individuals of atheoretical population expected to be negatively
impacted, or estimate the percentage of individuals receiving exposure above a benchmark level of
concern. (See Chapter 5.)

A more detailed discussion of GEM, including an example simulation, are included in Appendix C3.
Although a significant achievement by the Terrestrial Workgroup, this new tool should be considered at
this point in time a prototype or “betaModel” subject to validation and further refinements. Appendix
C3 aso includes a compilation of data from the literature on the number of granules remaining on the soil
surface on the day of application and at later times, and a kinetic model describing the release of pesticide

from granulesis aso included.

3.5.5 Granulelngestion Dose

The prototype model discussed above (GEM) evauates a scenario in which a bird’s home range contains
two habitat categories: (1) an agricultural field that has been treated with a granular pesticide and (2)
other untreated habitat. It does not address the situation in which a bird ranges among multiple
agricultural fields which have been treated with a granular pesticide on the same or different days. For

the latter, more general scenario, the one-day dose for any foraging day i, the cumulative dose over N;
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foraging days and the average daily granule dose over N, foraging days a bird or mammal receives

through ingestion of pesticide contaminated granules from foraging over one or more fields j per day are
given respectively by:

i=Ni
One Day Dos8, . (any day i) in mgkg BW*day= & GIR; - GnlWt - Alij /W

=1

(Eq. 3.5-8)
izNi j; Nj
Cumulative Dosg,,,(over N, days) inmglkgBW = @ A GIR;j- GnlWt - Alij /W
i=1 j=1
(Eq. 3.5-9)
Average Daily Dosg,,,e in mg/lkg BW* day = Cumulative Dosey, ¢/ N; (Eg. 3.5-10)
where,
] = index for different foraging fields
N, = maximum number of fields foraged by the bird or mammal over the foraging period of interest
i = index for different foraging days
N, = number of daysduring the foraging period of interest for which a dose is to be computed

GIR;=  granuleintake rate (number granules ingested/day) by the bird in field j on day i (GIR; = 0 if
thebirdisnot in field j on day 1)
GnlWt = average weight of single granule (kg)

Al = initia or average pesticide concentration on/in granulesin field j on day i (mg pesticide/kg
granule). If the field j has not been treated by day i, Al;, = 0.
W = body weight of the bird or mammal (kg)

The dose calculations made within GEM are dlightly more complicated than those presented above in that

particle ingestion rates (including granules) and resulting dose are estimated separately for different size
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categories for soil particles and then summed. For five pesticide products considered during devel opment
of the model, >96% of granules fell within two USDA soil particle size categories. medium sand and
coarse sand. Medium sand particles are defined as having a diameter of 0.25 to 0.50 mm. Coarse sand
particles have a diameter ranging from 0.50 to 1.0 mm. GEM estimates granule ingestion rate for
medium and coarse particles (including granules) separately and uses separate estimates for average

weight of medium and coarse granules in its calculation of the pesticide dose received.

3.6 DOSE RESULTING FROM INGESTION OF CONTAMINATED SOIL

The Terrestrial Workgroup devoted only a small amount of time to development of probabilistic tools for
estimating exposure viaingestion of soil. Thisroute of exposureisrarely considered in current pesticide
risk assessments and is generally not considered a major route. The methodology proposed is an
extension of that presented for food, in which Soil Ingestion Rate (SIR) replaces Food Ingestion Rate

(FIR) and the concentration in soil (C) replaces the concentration in food in the dose equations.

3.6.1 Dose Equationsfor Ingestion of Contaminated Soil

The one day soil dose for any foraging day i, the soil dose over N, foraging days and the average daily soil
dose over N; foraging days a bird or mammal receives through ingestion of pesticide contaminated soil

from foraging over one or more fields | per day are given respectively by:

i=Ni

One Day Dose,;, on day i in mg/kg BW*day = él (SRy)Cij IW (Eq. 3.6-1)
=
izNi jgNj
Cumulative Dose,,, over N, daysin mg/kg BW*day = ia:.l il (SRj)Cij /W  (Eg.3.6-2)
Average Daily Dose,,, in mg/kg BW*day = Cumulative Dose;, / N, (Eq. 3.6-3)
where,
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1j= index for different foraging fields

N. = maximum number of fields foraged by the bird or mammal over the period of interest

3i= index for different foraging days

N, = number of days during the foraging period of interest for which a dose is to be computed

SIR; = soil ingestion rate (kg dry weight/day) by the bird infield j on day i (SIR; = 0 if the bird
isnot infield j on day i)

Cy« = initid or average pesticide concentration on/in top soil infield j on day i (mg pesticide/kg dry
weight). If the field j has not been treated or received spray drift by day i, C;, = 0.

W = body weight of the bird or mammal (kg)

Methods for estimating key parameters SIR and C are discussed briefly in the following sections, as well
asin Appendix C3.

3.6.2 Estimation of Soil Ingestion Rate (SIR)

Soil ingestion rates of some wildlife species have been estimated from the acid-insoluble ash content of
wildlife scats or digestive tract contents. Estimates of the fraction of the diet on adry weight basis
consisting of soil or sediment are listed in Table 4-4 of the EPA Wildlife Exposure Factors Handbook.
SIR may be estimated straightforwardly by multiplying FIR by this fraction. This approach yields an
estimate of the total amount of soil ingested per day. However, the above dose equations require an
estimate of soil ingestion rate for individua agricultural fields. In the real world, birds and mammals may
visit severd different agricultura fields in aday and may spend a considerable amount of the day in other
types of habitats. Therefore, SIR,
total SIR. To estimate SIR;,
each fieldj onday i (P;). Thefield and day specific soil ingestion rate (SIR;) may then be estimated as

;» the amount of soil ingested at field j on day i, will be only afraction of

one must first estimate the proportion of the soil ingestion that occurs at
follows.
SRj = IR* Pj (Eg. 3.6-4)

The problem of estimating P, is similar to that of the parameter PT in the food equation (Section 3.3.3),

and the same estimation procedures can be used.
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3.6.3 Pesticide Concentrationsin Soil

Immediate post-application concentrations in soil can be estimated from application rates, foliar cover,
and spray drift estimates. Values of soil/water partition coefficients, combined abiotic/microbiologically
mediated degradation rates in soil, volatilization rates from soil and photodegradation rates in soil can be
obtained from fate studies commonly conducted by Registrants and submitted to OPP. (See Appendix
C7.) Many such values are listed in the ARS/USDA and OPP fate and chemical property databases. (See
Appendix C8.)

Estimates of initia soil residue levels, soil dissipation rates and soil/water partition coefficients can be
used as inputs to computer models to estimate bulk soil and pore water residue levels as a function of
post-application time. Alternatively, or for purposes of model validation and calibration, bulk soil and/or
pore water residue levels at various times post-application can aso sometimes be obtained from lab
and/or field studies.

3.7 OVERALL INGESTION DOSE

Doses due to ingestion of contaminated food, contaminated water, granules, and contaminated soil were
discussed in Sections 3.3, 3.4. 3.5, and 3.6, respectively. In Section 3.3, it was shown that the overall
dose due to the ingestion of contaminated food could be obtained by summing over the doses due to the
ingestion of different food types (eg., long grass, short grass, pods/seeds, fruits, insects, earthworms,
etc.). In Section 3.4, it was shown that the overall dose due to the ingestion of contaminated water could
be obtained by summing over the doses due to the ingestion of water from different sources (eg. ponds,
puddles, dew). By anaogy, it can be seen that the overall ingestion dose can be obtained by summing
over the overall food ingestion dose, the overall water ingestion dose, the granule ingestion dose, and the
soil ingestion dose. However, asis discussed below, it is generally not possible to obtain atotal dose by

summing over the overall ingestion dose, the inhalation dose, and the overall dermal dose

3.7.1 Combining Ingestion Doses to Give an Overall I ngestion Dose

The overall ingestion dose a bird or mammal receivesin field j on day i in mg/kg BW is given by:
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DOSE 14 ingestion(ij) = P OSErood ingestion(ii) T D OSCuvater ingestion(ii) T P OSCyranute ingestion(iiy T POSCsoil ingestionii)
(Eq. 3.7-1)
where,

DOSE; o ingestiongjy = d0Se @ bird or mammal receivesin field j on day i from food ingestion
DOSE, er ingestiongjy = d0Se @ bird or mammal receivesin field j on day i from water ingestion
D0SEy; ingesiongy = d0Se abird or mammal receivesin field j on day i from soil ingestion

DOSE, e ingesiiony = d0Se @ bird or mammal receivesin field j on day i from granule ingestion

The one day overall ingestion dose for any day i, the cumulative overall ingestion dose over N, days and
the average daily overal ingestion dose over N, days a bird or mammal receives through ingestion of

contaminated food, water, granules, and soil are given, respectively, by:

j:Nj

(inmg/ kg body wt - day) = é DOSE, eait - ingestionii)

j=1

One Day Dose

overall ingestion

(Eq. 3.7-2)
(Note that DOSE, e ingesionjy = 0 if the organism is not infield j on day i)

i=N; J=N;

(inmg/ kg body wt) = é é Dose

overall - ingestion(ij)
i=1 j=1

Cumulative Dose

overall ingestion
(Eq. 3.7-3)

Average Daily DOSE, g4/ ingesion (IN Mg/kg body wt.* day) = Cumulative DOSE, 4 ingesion! Ni
(Eq. 3.7-4)
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where,

J = index for different foraging fields
N; = maximum number of fields foraged by the bird or

mammal over the foraging time interval of interest for which a dose is to be computed
i = index for different foraging days

N, = number of days during the foraging interval of interest for which a dose is to be computed

3.7.2 Problems With Combining Overall Ingestion, Inhalation, and Overall Dermal Doses

In Section 3.7.1, doses from ingesting different types of media (food, water, granules, soil) were
combined to give an overall ingestion dose. In Section 3.9.2, dermal doses from different types of media
(pond, puddle, foliage, air, soil/sediment) are combined to give an overall dermal dose. Therefore, a
logical question would be can the overall ingestion dose, the inhalation dose, and the overall dermal dose

be combined to give atotal dose?

Inhalation and dermal doses cannot generally be combined with ingestion doses to give atotal dose. A
primary reason is that the fraction of the external dose that actually becomes available at a site or sites of
toxic action within the organisms differs substantially between ingestion, inhalation and dermal exposure
pathways. Another reason is that the site or sites of toxic action within the organism are often different
for the different exposure pathways. The preceding two reasons combined indicate that the dose response
curves generated with oral dosing would differ substantially from those generated with inhalation or
dermal dosing. Therefore, even if ingestion, inhaation, and dermal doses were combined to give atotal

dose, it could not be compared to dose response data to generate a risk assessment.

3.8 DOSE RESULTING FROM INHALATION OF CONTAMINATED AIR

The Terrestrial Workgroup devoted only a small amount of time to development of probabilistic tools for
estimating exposure viainhaation of contaminated air. This route of exposure israrely considered in
current pesticide risk assessments and is generally not thought to be a major route except within the

canopy for severa hoursimmediately post-application.
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3.8.1 Dose Equationsfor Inhalation of Contaminated Air
Assuming the inhalation rate | is constant with respect to time, the inhalation dose (1D) a bird or mammal

receivesin field j on day i in mg/kg BW is given by:

Inhalation dosein field j onday i = 1D, = (t,, - t,,)- 1 - G, /W (Eg. 3.8-1)

where,

| = inhalation (respiration) rate (L/hr or m*/hr)

W= body weight (kg)

t; = beginning of the exposure period infield j onday i (hr)

t;, = end of the exposure period in field j on day i (hr)(assigning ij subscripts to the beginning and end of
exposure periodsis necessary because a bird can be in more than one field on a given day and may
revisit the same field on one or more additional days)

C. = initial or average pesticide concentration in air over thefield j on day i (mg/L or mg/m?)

I

Note that ID; = 0 if the organismisnot infield j on day i.

The one day inhalation dose for any day i, the cumulative inhalation dose over N; days and the average
daily inhalation dose over N, days a bird or mammal receives through inhaation of pesticide contaminated

air are given respectively by:

j=Ni
One Day Inhalation Dose (I1D,) in mg/kg BW*day = é IDij/ (1day) (Eq.3.8-2)
j=1

i=Ni j=Ni
o] o]

Cumulative Inhalation Doseinmglkg BW = @ A |Dij (Eq. 3.8-3)
i=1 j=1
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Average Daily Inhalation Dose (mg/kg BW* day) = Cumulative Inhalation Dose/ N,

(Eq. 3.8-9)

where,

] = index for different foraging fields

N, = maximum number of fields foraged by the bird or mammal over the foraging time interva of
interest for which adose is to be computed

i = index for different foraging days

N, = number of days during the foraging interval of interest for which a dose isto be computed

Key parameters in the above equations that must be estimated are inhalation rate (1) and concentration in
ar (Cy).

3.8.2 Estimation of Inhalation Rate

The EPA Wildlife Exposure Factors Handbook contains estimates of the inhalation rates for
representative species of birds and mammals. Inhaation rates vary with species, body size, body

temperature, ambient conditions and activity levels.

Allometric equations for inhalation rates associated with standard metabolic rates (i.e., for an animal at
rest) are available for non-passerine birds and mammals. For example, Lasiewki and Calder (1971) in the
EPA Wildlife Exposure Factors recommended the following equations for

for estimating the inhalation rates of non-passerine birds and mammals associated with standard

metabolism rates:

Non - Passerine IR = 0.4089 - WT %"
(Egs 3.8-4 and 3.8-5)
Mammal IR = 05458 Wt %%
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where,

IR = inhalation rate in m*/day
Wt = body weight in kg

The above equations are applicable to post digestive, at rest metabolic rates. Inhalation rates for non-
passerines and mammals during times when metabolic rates are higher may be several fold greater (EPA
Exposure Factors Handbook). Also, inhalation rates in general are expected to be higher for passerines

which have higher metabolic rates than for non-passerines.

3.8.3 Estimation of Pesticide Concentrationsin Air

Pesticide concentrations in air will depend on numerous factors including degradation ratesin air, air flow
and mixing volume, deposition rates from the air, and volatilization rates from soil, foliage, and water.
Volatilization rates depend in part upon the magnitudes of soil/water partition coefficients, water/foliar

partition coefficients and Henry's Law constant.

Values of the various parameters listed in the previous paragraph are used as inputs to models such as

PRZM to estimate pesticide concentrations in air within the canopy.

Values of soil/water partition coefficients, Henry's Law constants, abiotic hydrolysis rates,
photodegradation in air rates, and sometimes volatilization flux rates can be obtained from fate studies
conducted by Registrants and submitted to OPP. Some values are listed in the ARS/USDA and/or the
OPP fate and chemical property databases. However, it is often difficult to separate volatilization rates

from soil, foliage and water from overall dissipation rates in those media

3.9DOSE RESULTING FROM DERMAL CONTACT WITH CONTAMINATED
ENVIRONMENTAL MEDIA

Dermal exposure and associated dose to birds and mammals has not been well characterized. Simple

models for passive rates of chemical mass flux transfer across derma membranes are based on Fick's law
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of diffusion (Marzulli and Maibach (1991) - Dermato-toxicology. Hemisphere Publishing Company. 4th
Edition P.17).

3.9.1 Dose Equations for Dermal Contact With Contaminated Environmental Media

Using Fick's law of diffusion, the passive rates of mass transfer are assumed to be proportional to the
product of the contact time times the contact area times the diffusivity across the membrane times the
pesticide concentration gradient across the dermal membrane and inversely proportional to the width of

the membrane.

Assuming only passive transport across the membrane, the dermal doses from pond water, puddle water,
foliage, air, and soil/sediment, a bird or mammal receivesin field j on day i in mg/kg body weight could be

approximately given respectively by:

Dosedermal(pond)ij = (tijz ) tijl)(fpond )(DmAcpond )(Cpond(ij) ) Cblood(i))/zvv (Eq. 3.9-1)
DOSE e pucayii = (tijz - tijl)(fpudd )(DmAcpudd )(Cpudd(ij) - Cblood(i))/zvv (Eq.3.9-2)
Dose dermal ( foliage)ij = (tijz B tijl)(ffoliage)(DmA:foliage)(cfoliage(porewater)ij B Cblood(i))/zvv
(Eq. 3.9-3)
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DOSE e airij = (tijz ] tijl)(fpond)(Dm)(Ac ] Acpond)(cair(ij) ] Cblood(i))/Z\N+
(tijz ] tijl)(fpudd))(Dm)(Ac ] Acpudd)(CaJr(ij) ] Cblood(i))/Z\N+

(652 t0)( o A+ Ao (Cory - o)/ 20+

(ty2 - t2)(1 Foome - oo~ ramoe) DA ) Cary = Coonay ) 2W

(3.9-4)

Dosedermal(soillsed)ij = (tijz ) tijl)(DmAfeet)(Csoillsed(pore— water (ij) Cblood(ij))/zvv (3.9-5)

where,

D,= diffusivity of the chemical across the membrane in cm?/hr
z= width of the membranein cm

W= body weight in kg

Coonaiy =  INitial or average pesticide concentration in the pond in field j on day i (mg/L)
Couaeiy = Initial or average pesticide concentration in the puddiesin field j on day i (mg/L)

Chraliagegporewatenyj = 1Nitial or average pesticide concentration in foliar pore water in field j on day i (mg/L)

Cay =  Initial or average pesticide concentration in air over field j on day i (mg/L)

Coilised pore water(ij) = initial or average pesticide concentration in soil/sediment pore water in field j on day
i (mg/L)

Chiooqy = INitial or average pesticide concentration in the blood of the organism on day i (mg/L)

ty = beginning of the exposure period in field j on day i (hr)

tin = end of the exposure period in field j on day i (hr)(assigning ij subscripts to the beginning and

end of exposure periodsis necessary because a bird can be in more than one field on agiven

day and may revisit the same field on one or more additiona days)

foond = fraction of the exposure period the organism isin the pond
= total dermal area available for contact except for bottom of feet (cm?)
Aqona=  dermal areain contact with pond water (cm?)

3-63



a b~ W N P

10

11
12
13
14
15

16
17
18

19

20

fouda = fraction of the exposure period the organism is wading in puddles

A= dermal areain contact with puddle water (cnv)

faige = fraction of the exposure period the organism isin dermal contact with foliage

Asoie = dermal areaiin contact with foliage (cm?)

A = dermal area of the bottom of the feet

3.9.2 Combining Dermal Doses

The overdl derma dose a bird or mammal receivesin field j on day i in mg/kg BW is given by summing

over the dermal doses from dermal contact with different environmental media:

Dosedermal(overall)ij = Dosedermal(pond)ij t Dosedermal(puddle)ij t Dosedermaj(foliage)ij +

where,

DOSE jermal (ponayij =
DOSE ermal puddieyij =
DOSE emafoliage)ii =
DOSEyemalainii =

DOSE jermal soil/sedj =

(3.9-6)
Dosedermaj(air)ij + Dosedermal(soillsed)ij

dermal dose abird or mammal receivesin field j on day i from pond water
dermal dose abird or mammal receivesin field j on day i from puddies
dermal dose abird or mammal receivesin field j on day i from foliage
dermal dose abird or mammal receivesin field j on day i from air

dermal dose abird or mammal receivesin field j on day i from soil/sediment

The one day overall dermal dose for any day i, the cumulative overall dermal dose over N, days and the

average daily overall dermal dose over N, days a bird or mammal receives through contact with pesticide

contaminated pond water, puddles, and air in one or more fields | per day i are given respectively by:

e
OneDayDosedermaJ(overall) (In mg/ kg* day) = e

(Eq. 3.9-7)

N.

. )
A DOSE 1 overail)i E/ (1 day)
1

B i=

i
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(Note that DOSE g naoveranyj = O if the organismis not in field j on day i)
i=N j=N;

Cumul ativeD 0SE . (overary (IN MY/ kg body wit.) = a a DOSE e i (overainyij (3-9-8)
i=1 j=1

Average Daily DOSE e overary (IiN Mg/kg body wt.*day) = Cumulative DOSEe i overany/Ni - (3.9-9)
where,

J = index for different foraging fields
N. = maximum number of fields foraged by the bird or

mammal over the foraging time interval of interest for which a dose is to be computed
i = index for different foraging days

N, = number of days during the foraging interval of interest for which a dose is to be computed
Estimating pesticide concentrations in the various environmental media with which birds and mammals
have dermal contact is discussed in Section 3.10 and Appendix C4. Estimates of concentrations in the
blood or specific tissues just below derma membranes requires the use of multi-compartment
pharmacokinetics models that are beyond the scope of this report.

3.9.3Bird and Mammal Skin Surface Areas

The following equations are provided in the EPA Wildlfe Exposure Factors Handbook for estimating the

skin surface area of birds and mammals:

Bird SA,,, = 10- W 07
(Egs. 3.9-10 and 3.9-11)
Mammal SA,,, = 12.3- Wt 2%

where,
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SA,.= surfaceareaof the skinin cm?

Wt = body weight in g

3.10 ESTIMATING PESTICIDE CONCENTRATIONSIN ENVIRONMENTAL MEDIA

The monitoring, experimental determination or model estimation of pesticide concentrations in various
environmental media as a function of time and location is a necessary prerequisite to estimating the
pesticide doses birds and other terrestrial wildlife receive. The pesticide doses they receive result from
the ingestion of, inhalation of, and dermal exposure to various types of pesticide contaminated
environmental media (plants, insects, water, air, soil). The magnitude of the ingested or inhaled dose
received will be directly proportional to the product of the mass of media ingested or inhaled and the
pesticide concentrations within the media. The magnitude of the dermal dose received should be
approximately proportional to the product of the contact surface area times the duration of contact times

the diffusivity across the membrane times the concentration gradient across the dermal membrane.

The relationship between pesticide concentrations in environmental media and the pesticide doses

received by birds and mammals are demonstrated by the dose equations provided in Sections 3.3 - 3.9.

The concentrations of pesticides and their mgjor degradates in various types of environmental media can
be estimated with the use of computer models or experimentally determined or monitored in various field
and monitoring studies. Inputs to computer models involve many types of parameters including
meteorological, hydrological, pesticide application, agricultural practices, soil properties, plant properties,
water properties, initial concentrations on foliage, and the environmental fate properties of the pesticide
and its mgjor degradates. Vaues for most of those types of parameters can be obtained from databases.
Values of the environmental fate parameters for the pesticide and major degradates are determined
primarily from laboratory (and occasionaly field) environmental fate studies, and are often placed in
databases.

In this section, brief overviews are provided of various topics related to the estimation and/or
determination of the concentrations of pesticides and their mgjor degradates in various types of

environmental media. The overviews and topics correspond to ones discussed in greater detail in
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Appendix C.

3.10.1 Pesticide M ass Balance Equations and Their Solutions

Computer models used to estimate pesticide concentrations in environmental media (plants, soil, water,
air) are based in part upon analytical or numerical solutions to chemical mass balance ordinary or partial
differential equations. The solutions to the mass bal ance equations give the pesticide concentration as a
function of time (if they are ordinary differential equations) or as a function of both time and location (if
they are partial differential equations). The solutions to the mass balance equations depend upon the
initial conditions specified (if they are ordinary differential equations) or on both initia and boundary
conditions specified (if they are partial differential equations).

Depending upon the complexity of a computer model, mass balance differential equations may be
generated and solved for each environmental medium (e.g., plants, soil, water, air), each compartment
within each medium (e.g., for plants: roots, stems, leaves, fruits/pods) and each phase within each
medium or compartment (e.g., for soil: pore water, soil solids, pore air) smulated. 1f the model alows
for reversible mass transfer between different environmental media, compartments, or phases, the mass
balance differential equations must be solved simultaneously (see Appendix C4). If the model has
hydrology components and is tied to weather, additional differential equations accounting for water
balance and movement are also solved along with the chemical mass balance equations (see Appendix
C4).

A simple example of a mass balance ordinary differential equation and its solution based upon a specified
initial condition is as follows. The generic form of a mass balance equation for an environmental medium

or acompartment within an environmental medium is:

Rate of mass change within the medium or compartment =

rate of mass input - rate of internal degradation - rate of mass output (Eg. 3.10-1)

For adaily time step, smple one compartment plant model, equation 3.10-1 becomes.
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j:jmaX rans
dm,;,  d(Byg;Cppy) g

dt - dt - (1 (TSCF)QtranS(ij)CpW(ij) i (kdegr + kV)Bag(i)Cp(i)

(Eq. 3.10-2)

where,

dm,/dt = rate of change in pesticide massin/on plant on day i

Bay = above ground plant biomass as a function of time on day i (kg dry weight)

Co) = concentration of chemical in/on plants as a function of time on day i (mg chem/kg dry wt.)
TSCF = transpiration stream concentration factor

Qi) =  transpiration flow on day | from soil compartment (layer) j (cm®/day)

C,.iy=  SOil porewater concentration at the start of day i at t=t; in soil layer j (g/cm®)

| = soil layer index

Jmaxwang = the deepest soil layer from which transpiration is extracted
Kaegr = degradation rate constant (1/day)
k,= volatilization rate constant (1/day)

Equation 3.10-2 is based upon Carsel et a. 1997; Trapp and Matthies 1995; and Trapp 1995.

The three terms on the right side of equation 3.10-2 representing (in order) the rate of uptake by plants,
degradation within/on the plants, and volatilization from the plants correspond to the “rate of mass
input”, “rate of internal degradation”, and “rate of mass output”, respectively in generic equation 3.10-1.
Note that in this example, the “rate of massinput” includes the rate of uptake by the plants from the soil,
but does not include the application rate. That is because the time required for application is generally
only asmall fraction of the assumed daily time step upon which the differential equation is based.
Consequently in this example, any application is considered to be more of an instantaneous event
contributing to the initial concentration, rather than a continuous process that needs to be included as a
term in the mass balance differential equation. As an aternative, we could have assumed that application
was a continuous process extending throughout the day and included it as aterm in the differential

equation.. However, in addition to not representing reality as well as an assumption of instantaneous
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application, a continuous application assumption would make using Fletcher time zero foliar values more

difficult and much less direct (see below) .

The total transpiration on day i (Q,4.;) asWell as well as the transpiration extracted from each soil layer
on day i (Qyasy) Will increase with increasing biomass and leaf areaindex. However, in adaily time step
model, increases in transpiration can be reflected at the beginning of each day while still assuming that the
transpiration remains constant during any given day i. Likewise, changesin the soil pore water
concentration can be reflected at the beginning of each day while still assuming that the soil pore water
concentration remains constant during any given day i. Consequently, during any given day i, the uptake

term in Equation 3.10-2 can be considered constant such that:

dm,;, d(Bag(i)Cp(i))

dt dt = Kup = Ko Bagiy o (Eq. 3.10-3)
where,
j = jmgx(trans)
Kpp = @ (TSCF)Qqans(y)Cpuyy = Fate of pesticide uptake (Eq. 3.10-4)
j=1
K = ke * (Eqg. 3.10-5)

Separating variables, integrating equation 3.10-3 from m,, = B,;,C,) = B4 (t=t)C,(t=t)) to B,;,C,y =

B (t=t;.) C,(t=t;,,) and from t=t; from t=t,,,, allowing for a possible instantaneous addition at the
beginning of day i+1 at t=t;,, due to direct application or spray drift, and rearranging generates the
following daily time step agorithm. The algorithm gives the concentration of chemical on/in plants at the
beginning of day i+1 at t=t, in terms of the concentration at the beginning of the previous day i at t=t;
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(Eq. 3.10-6)
where, the initial condition is

Cp(i) = Cp (t = ti) at= ti (Eq. 3.10-7)

The plant biomass at the beginning of each day can be calculated separately from one of severa plant
growth models including an exponentia growth model and several more complex alternatives that

generate characteristic sgmoidal shape plant growth curves (Jorgensen 1995).

For direct foliar application at t=t;,;, M, (t=t.,) in equation 3.10-6 is given by:

rﬂp(add) (t = ti+1) = [fint (t = ti+1)](1' fsd )[ App(t = ti+1)] (Eq 3'10'8)
where,

f(t=t,) = fraction intercepted by plant when chemical is applied at t=t;,,

fy= fraction loss by spray drift before hitting the targeted field

App(t=t,,) = nominal application rate at the beginning of day i+1 at t = t,,,in mg chemica/m?(convert

from Ib/acre or kg/ha)

As an dternative to computing the added mass of chemical on/in plants per unit field area m, 4 (t=t;.,)
for direct application from equation 3.10-8 and then dividing by the biomass per unit field area B, (t=t;,,),
My (1=151)/B o (t=ti,,) can be computed from the product of the Fletcher et al. (1994) time zero foliar
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residues (normalized to an application rate of 1 Ib ai/acre) times the application rate.

For spray drift to foliage at t=t;,;, M, (t=t.,) in equation 3.10-6 is given by:

mp(add) (t = 1:i+1) = [fint (t = 1:i+1):|(SDavg )[ App(t = 1:i+1):| (Eq 3'10_9)

where,
SD,,, = average spray drift deposition

As an dternative to computing the added mass of chemical on/in plants per unit field area m, 4 (t=t;.,)
for spray drift from equation 3.4-9 and then dividing by the biomass per unit field area B, (t=t;,,),

My a0 (1=151)/B4(t=ti,,) can be computed from the product of the Fletcher et al. (1994) time zero foliar
residues (normalized to an application rate of 1 Ib ai/acre) times the application rate times the average

spray drift deposition fraction for the field receiving the spray drift.

Caution should be observed in using the Fletcher et a. (1994) time zero foliar values because of the large
uncertainties associated with basing concentrations on a variable wet weight rather than a constant dry
weight. Also, if residues on awet weight basis are used to estimate ingestion dose, food intake must also
be on awet weight basis which may require the use of dry to wet factors (DWFs) to convert dry weight
food ingestion to wet weight food ingestion.

3.10.2 Computer Modelsfor Estimating Pesticide Concentrationsin Environmental Media

Based upon the literature reviews by Golder Associates (1997) and Jorgensen (1995), there do not
appear to be any residue computer models currently available that could be used to adequately generate
distributions of pesticide concentrations in all relevant environmental media for use in probabilistic
terrestrial exposure assessments. However, there are several existing residue models which could
possibly serve together as a good foundation for such amodel. These include the spray drift model
AgDRIFT (Bird et al. 1995), the leaching/runoff model PRZM 3 (Carsdl et al. 1997), the surface water
model EXAMS (Burns 1990), the Uptake, Translocation, Accumulation, and Biodegradation (UTAB)
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plant contamination model (Boersma et al. 1988, Lindstrom et al. 1991), the SNAPS/PLANTX plant
contamination model (Matthies and Behrendt 1995; Trapp, McFarlane, and Matthies 1993; Trapp 1995),
and the Soil-Plant-Air Fugacity plant contamination model (Paterson, Mackay, and McFarlane 1994,
Paterson and Mackay 1995).. In addition, several correlations between the uptake of chemicals by plants
and their physical chemical properties which may be useful in model development have been reported in

the literature. All of these will be discussed in this section .

Other models which may aso be helpful in developing a comprehensive terrestrial exposure model are
ones that include animal behavior as well as residue algorithms to estimate dose such asthe Terrestria
Exposure Assessment (TEEAM) model (Bird et al. 1991), the bird spray exposure model PARET
(Appendix A2), the bird granule exposure model developed by Dixon et a. 1998(Appendix A3), the bird
granule exposure model developed by Dow/Elanco, Fischer, and Best (GEM, Appendix C3), and the
Terrestrial Risk Integrated Methodolgy (TRIM) model (U.S. EPA 1998).

The Paret Model is discussed in greater detail in Chapter 5 and in Appendix A2. The Dixon Moddl is
discussed in greater detail in Section 3.6 and in Appendix A3. The GEM Model is discussed in greater
detail in Section 3.6 and in Appendix C3.

OPP recently began using the spray drift model AgDRIFT to estimate spray drift pesticide loadingsto
ponds adjacent to treated fields as part of aguatic exposure assessments. Estimates of spray drift to off-
site soil and water and to off-site vegetation are also important components of terrestrial exposure
assessments. OPP plansto use AgDRIFT for terrestrial as well as aquatic exposure assessments.
AgDRIFT was developed by modifying the USDA AGDISP model as part of a CRADA cooperative
agreement between the SDTF and the U.S. EPA's Office of Research and Development (ORD).

OPP currently uses the leaching/runoff model PRZM 3 to estimate runoff pesticide loadings to ponds
adjacent to treated fields as part of aguatic exposure assessments. Although not completely adequate for
pesticide terrestrial exposure assessments, a number of outputs of PRZM3 are useful for interim
terrestrial exposure assessments. As an option, PRZM3 can be run stochastically to give distributional
outputs. However, the plant growth and plant fate algorithms of PRZM 3 need to be strengthened for use

in terrestrial exposure assessments and it lacks insect, granule, and puddle algorithms.
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PRZM3 outputs of interest with respect to terrestrial exposure assessments include daily estimates of
pesticide concentrations in soil pore water and of bulk soil concentrations for each of several hundred
vertical computational compartments. PRZM 3 uses its estimates of concentrations in soil to estimate
runoff/erosion losses of pesticide which in turn are used as input to EXAMS to estimate pesticide
concentrations in adjacent ponds (also important for terrestrial exposure assessments). Estimates of
concentrations in soil can aso be used by algorithms outside of PRZM 3 to help estimate uptake by

insects and other soil invertebrates.

For aguatic exposure assessments, estimates by PRZM 3 of pesticide losses due to runoff water and soil
erosion from a 10 hatreated field and by AgDRIFT of spray drift deposition are used as pesticide |oading
inputs to the surface water EXAMS. EXAMS than estimates dissolved and adsorbed concentrationsin
an adjacent 1 haby 2 m deep pond. Comparable computations would also be useful in aterrestria
exposure assessments since birds and mammals utilize farm and/or natural ponds for drinking, food, and

swimming.

EXAMS generates mass balance differential equations for each segment within a ssmulated water body
and generates steady state solutions to the equations for each computational time step (Burns 1990).
EXAMS outputs of interest with respect to terrestrial exposure assessments include daily estimates of

dissolved and sediment bound concentrations of pesticide in each segment.

EXAMS cannot currently be run stochastically. Tempora and site distributions of estimated pesticide
concentrations for aguatic exposure assessments are currently generated by running the model

deterministically over multiple years and sites.

The original and subsequent versions of PRZM were developed as |eaching/runoff models, not as
terrestrial exposure models. PRZM 3 does not estimate factors necessary for the conversion of pesticide
mass/area of the field to pesticide mass/mass of plant such as the plant biomass. Furthermore, the linear
and exponentia canopy cover algorithms PRZM 3 uses may be inadequate for estimating foliar
interception. Other weaknesses of PRZM 3 with respect to terrestrial exposure assessments are that it
does not simulate the fate of granules, and does not estimate pesticide concentrations in the highly

transient puddles formed on fields during rainfall events. Although PRZM includes a plant uptake termin
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the mass balance equation for sail, it does not appear to include it in the mass balance equation for

vegetation.

TEEAM was derived from PRZM in the late 1980s by the USEPA laboratory in Athens GA and its
contractors for usein terrestrial exposure assessments (Bird, Cheplick, and Brown 1991). Although
TEEAM was not supported beyond the testing phase, many of the algorithms developed for it could
possibly be used or modified for use in anew model. TEEAM was a close derivative of the
leaching/runoff model PRZM and used many of the same algorithms. However, it did contain improved
plant growth algorithms, improved plant fate algorithms from EPIC (which included uptake), fate
algorithms for granules, and algorithms for estimating pesticide concentrations in transient small puddles.
In addition, algorithms for animal movement (based upon a Markov model), animal feeding, and animal

uptake (including soil invertebrates as well as vertebrates) were included.

Most of the plant models described below are simple compartment models which divide the plant medium
into compartments, assume first order mass transfer between compartments and assume first order
degradation within each compartment. Mass balance ordinary differential equations and initial conditions
are developed for each compartment and solved simultaneously to estimate pesticide concentrations as a
function of time in each compartment. For this report, Moorhead (Appendix C4) has extended that
concept to different media as well based on exposure pathway models. The matrix formulation of

compartment and multimedia models is discussed in greater detail in Appendix C4.

The Uptake, Trandocation, Accumulation, and Biodegradation (UTAB) plant contamination model
divides the plant into one root, three stem, and three leaf compartments (Boersma et al. 1988; Lindstrom
et al. 1991). Each compartment is further subdivided into xylem, phloem, and storage subcompartments.
The compartments are represented as a series of continuous stirred flow reactors separated by
membranes. Transport and accumulation within each compartment are represented by mass balance
eguations that account for diffusive transport into and out of each compartment, convective mass
trangport within each compartment and first order degradation and adsorption to solid matrices within
each compartment. The series of differential equations are solved numerically to estimate chemical

masses in each compartment.
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SNAPS (Simulation Model Network Atmosphere-Plant-Soil) is actually a coupled series of 3 models
used to simulate soil water content, and chemical transport and fate within the soil profile and in plants
(Matthies and Behrendt 1995). The chemical transport and fate model for plantsin SNAPS s called
PLANTX (Trapp, McFarlane, and Matthies 1993; Trapp 1995).

The plant model consists of root, stem, leaf, and fruit compartments. The PLANTX model numerically
solves simultaneoudly mass balance equations for the roots, stems, leaves, and fruits. The model
simulates passive diffusive and transpiration uptake by roots from soil water and advective mass transport
with transpiration and/or assimilation streams to and from the stems, leaves and fruits. It smulates first
order degradation and partitioning between the aqueous phase and plant tissue in all of the compartments.

PLANTX also simulates volatilization from |eaves to the atmosphere.

The PLANT moded isasimplified version of the PLANTX model in which the 4 compartments within the
PLANTX model (roots, stems, leaves, and fruits) are replaced by asingle overall aeria plant
compartment (Trapp and Matthies 1995; Trapp 1995). Uptake is represented by the product of the
trangpiration flow times the Transpiration Stream Concentration Factor (TSCF) times the concentration
in the soil pore water. For neutral organics, the TSCF can be estimated from the octanol/water partition
coefficient as described below. The single mass balance equation for the plant compartment is solved

analytically to give the bulk chemical concentration in the plant.

The TRIM Modd is currently being developed by the USEPA Office of Air Quality Planning and
Standards and its contractors. Like the other plant models previoudy discussed, the environmental fate
module is a ssimple compartment model that allows for first order mass transfers between compartments
and first order degradation within each compartment. A mass balance ordinary differential equation and
initial condition is developed for each compartment. The system of ordinary differential equations are
then numerically solved smultaneously to give the chemical mass in each compartment as a function of

time.

A root-stem-foliage compartment model was devel oped to predict residue uptake from soil and fate and
transport within plants (Paterson, Mackay, and McFarlane 1994, Paterson and Mackay 1995). The

model involves solving simple mass balance equations for each compartment simultaneoudy. It is smilar
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in many aspects to the various other plant fate models discussed above, but it differs from most in using
the concept of fugacity and the ratio of fugacity capacities of different phases to estimate equilibrium

partition coefficients.

Plant uptake of pesticide residues can occur by uptake from the soil solution or by absorption of residue
volatilized from the soil. Uptake of the residue from soil solution may be a passive process whereby the
residue is transported by the transpiration stream to the foliage. Such a process would allow the

prediction of foliage residue levels based upon such chemical propertiesas K. Pesticide solubility and
soil adsorption properties would a so influence bioavailability of the chemical to the plant. Root growth

and diffusion may also contribute to plant uptake.

Plant root uptake of six herbicides and a systemic fungicide was described by Shone and Wood (1974)

using the Root Concentration Factor (RCF), where:

RCF = (Concentration in roots-wet weight)/(Concentration in external solution).

Trandocation of the chemical from the roots to the shoots was described by the Transpiration Stream
Concentration Factor (TSCF), where:

TSCF = (Conc. in transpiration stream or xylem sap)/(Conc. in external solution)

Using linear regression, Briggs et al. (1982) developed equations for estimating the RCF and TSCF for

lipophillic compounds from the logarithm of their octanol/water partition coefficient.

Greater details on computer models for estimating pesticide concentrations in environmental media are

provided in Appendix CA4.

3.10.3 Computational Methodsfor Volatilization and Residuesin Air

Pesticide doses to birds and mammals through direct inhalation of pesticide contaminated air is generally
thought to be relatively small compared to pesticide doses from ingestion of food and water.
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Nevertheless, air inhalation could occasionally be an important exposure pathway, particularly for
inhalation of volatile chemicals by terrestrial birds and mammals who spend a considerable amount of

time within a plant canopy.

Pesticide residues in air are determined directly in lab and field studies and can also be estimated with the

use of computer models.

Computational methods for resduesin air generally focus on volatilization fluxes from soil, water, and
plants. The PRZM3/TEEAM models assume that pesticide concentrations in the air above bare soil,
open water, and plant canopies are approximately equal to zero due to wind advection and turbulent
dispersivity. However, the models use estimated volatilization fluxes to estimate pesticide concentrations

in air within the plant canopy.

The PLANTX/PLANT models developed by Trapp and Matthies (1995, 1997) for estimating chemical
residues in plant aso contain an algorithm for estimating pesticide volatilization fluxes from leaves.
Methods for estimating foliar volatilization rate constants are discussed by Riederer (1995).

Volatilization rates from water typically increase with increasing Henry's Law constant, water flow, wind
speed, and temperature and with decreasing molecular weight and water depth [ Schwarzenbach,
Gschwend, and Imboden (1993) and Thomas (1990)]. The cited literature also contain discussions on

how to estimate volatilization rates from water.

Greater details on estimating volatilization rates and pesticide concentrations in air are provided in
Appendix C5.

3.10.4 Pesticide Dissipation Kineticsin Environmental Media

This overview of dissipation Kinetics is applicable to various types of environmental media, but the
concepts covered are most frequently used for soil. The concentrations referred to are generally
experimental concentrations for a given bulk environmental medium, not individual phases. For example,

soil concentration refers to the bulk soil, not to the individual pore water, soil solids and pore air
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concentrations.

Dissipation kinetics data in environmental media are often fit to a single rate constant pseudo first order
kinetics model. The reasons are because of the smplicity involved and because most computer models
used to estimate pesticide concentrations in environmental media require as input, pseudo first order rate
constants. Data can be fit to a single rate constant pseudo first order kinetics model using linear or non-

linear regression.

If linear regression is used to fit datato a single rate constant pseudo first order kinetics model, the
concentration data must first be In transformed before it is regressed against time. In cases where the
dissipation of achemical fits a single rate constant pseudo first order kinetics model over the entire study
duration, a plot of the natural logarithm of the concentration (In C) versus time will be approximately

linear.

Unfortunately, the dissipation of a chemical often does not fit a single rate constant pseudo first kinetics
model very well over the entire duration of the study. In such cases, a plot of the natura logarithm of the
concentration (In C) versus time will not be linear. It will often appear temporally "biphasic” with the
first phase having a substantially steeper slope than the second phase. The reasons for observed
"biphasic" behavior may vary and have not been firmly established. Some reasons may include some of
the chemical being gradually and irreversibly imbedded into the environmental media to a sufficient extent
to inhibit dissipation processes, declinesin microbiological activity over time, and the complexity of

some dissipation processes such as volatilization.

Biphasic data can be fit to a number of different regression models. The most commonly used oneisthe
biphasic linear regression modd in which In C is plotted against time. The plot is essentially divided by
eyeinto an initial and subsequent phase representing different slopes. Linear regression of In C versus
time is then performed on both phases separately to estimate a rate constant and corresponding half-life

for each phase.

The resulting estimates of pseudo first order rate constants for each phase can in some cases aso be used

as input to some computer models. However, the biphasic regression model itself is not very redlistic
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because it assumes the shift from one slope to another is essentially instantaneous whereas a more gradual
shift in the dope is generally observed. Consequently, it is sometimes difficult and somewhat arbitrary to

determine when the first phase ends and the second phase begins.

Whenever the data do not fit a single rate constant pseudo first order kinetics model very well over the
entire duration of a study using linear regression on In transformed data, there are a large number of
aternate non-linear regression models which can aso befit to kinetics data. Fortunately, the widespread
availability of relatively low cost spreadsheets and statistical software has made performing non-linear

regression more routine than in the past.

Non-linear regression models which can be used to fit observed chemical dissipation data include
applying non-linear regression to the untransformed form of the single rate constant pseudo first order
kinetics model, an empirical n order model, areversible equilibrium 2 compartment model, areversible
non-equilibrium 2 compartment model, and a non-reversible non-equilibrium 2 compartment model. All
of those models except the empirical n order model are also pseudo first order kinetics models. They are
discussed in greater detail in Appendix C6.

Estimates of rate constants for the formation and decline of major degradates can be input into computer
models to simulate the formation and decline of the degradates. Assuming pseudo first order kinetics,
estimates of rate constants for the formation and decline of major degradates can sometimes be obtained
by using nonlinear regression to fit time series data to the exponential solutions to the mass balance

differential equation for each degradate.

To develop mass balance equations and their solutions for major degradates, it is first necessary to
assume a degradation pathway such as the one provide below. This pathway represents a combination of
series and parallel degradation pathways in which the parent chemical P smultaneously degrades to
primary degradates D, and D, which in turn each simultaneously degrade to secondary degradates S,,
and S;z, and S,, and S, respectively. Note that other pathways are also possible such as one primary
degradate being formed from another primary degradate as well as the parent.

Note that concentrations should be in units of moles/volume rather than mass/volume to maintain the
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correct stoichiometric relationship between the parent, primary degradates, and secondary degradates. If

numerical methods of solution are used, equations for non-first order processes can aso be developed.

Greater details on analyzing pesticide dissipation kinetics datain environmental media are provided in
Appendix C6.

3.10.5 OPP-Required Pesticide Fate and/or Residue Studies

The Environmenta Fate and Effects Division (EFED) and the Health Effects Division (HED) in OPP
require pesticide registrants to submit numerous pesticide studies. The results of the studies help OPP
evaluate the potential exposure and risks to non-target organisms and humans associated with pesticide
use. Studies of interest with respect to terrestrial exposure assessments include |aboratory fate studies,
field fate and residue studies, and ecological residue/effects studies.

EFED required laboratory transformation studies (study requirements vary depending upon the pesticide's
use and/or characteristics) include abiotic hydrolysis, direct photolysisin water, photodegradation on soil,
photodegradation in air, aerobic soil metabolism, anaerobic soil metabolism, aerobic aguatic metabolism,

and anaerobic aguatic metabolism. Laboratory transformation studies determine the transformation
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pathways of the parent and major degradates, the decline rates of the parent and the formation and
decline rates of major degradates. Parental decline rates are reported as half-lives and/or DT50s. A
major degradate is defined as one accounting for > 10% of applied or present at > 0.01mg/kg (whichever
islower) at any time during any laboratory study. The results are generally provided tabularly and

graphically in concentration versus time series.

EFED required laboratory mobility studies (study requirements also vary depending upon the pesticide's
use and/or characteristics) include adsorption/desorption batch equilibrium, soil column leaching, and
volatilization from soil. The laboratory fish BCF study determines the accumulation and depuration of

pesticides and their major degradates in whole fish, edible tissues, and non-edibl e tissues.

The results of the EFED laboratory fate studies are used for developing input to environmental fate and
transport models. The results of |aboratory fate studies are also used to devel op protocols for conducting
field studies.

EFED required field fate studies (study requirements vary depending upon the pesticide's use and/or
characteristics) include terrestrial field dissipation, aguatic field dissipation, forestry dissipation

Field fate studies are conducted under actual use conditions using one or more formulated pesticide
products. In all of the different fate field studies, the dissipation of the parent and formation and decline
of mgjor degradates are generally presented tabularly and graphically as concentration versus time series
for any environmental compartments for which the number of detectsis sufficient to do so. The
dissipation of the parent in the various environmental compartments monitored is aso characterized by
computed haf-lives and or DT50s.

The results of field fate studies are typically not used for inputs to models because they reflect the overal
dissipation of the chemical from potentially multiple dissipation pathways whereas models generally
require separate inputs for different dissipation pathways. However, the results of the EFED field studies
are compared to modeling outputs and are used to assess the overall environmental fate of a pesticide and

its mgjor degradates resulting from multiple dissipation pathways.
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Estimates of spray drift deposition as a function of distance downwind from the application site are
necessary to predict residues on/in vegetation as well as on/in soil and in water. The Spray Drift Task
Force (SDTF) is aconsortium of approximately 40 registrants that was formed in 1990 to conduct
research on droplet size distributions and spray drift depositions and to develop a computer model to
estimate spray drift. The results of the SDTF research and the AGDRIFT model developed by the SDTF
for estimating spray drift are currently being assessed by OPP and external peer review.

Over anumber of years, EFED has required and/or received approximately 45 terrestrial ecological
residue/effects studies covering 15 pesticides. The studies involve treating fields with maximum allowed
numbers of applications and application rates. Various environmental media (including soil, water,
vegetation, birds, mammals, and occasionaly amphibians) were sampled at various sampling intervals.
The samples were analyzed for the parent and occasionally for major degradates as well. Observed

effects on non-target organisms were also reported.

Inhalation exposure studies are imposed by HED to determine the inhalation exposure of pesticide
applicator workers (applicators and flaggers) during application and of farm workers post-application.
The results of the studies can sometimes be used to estimate total pesticide concentrationsin air

reflecting pesticide adsorbed to particulate matter as well as pesticide in the vapor phase.

The HED requires foliar dislodgeable residue studies for foliarly applied pesticides of concern for
potentia risks to humans. Although of potential use in terrestrial exposure assessments, dislodgeable
residues reflect only a part of the total foliar residues ingested by a bird or mammal ingesting
contaminated foliage. Furthermore, the percentage of registered pesticides for which the foliar
didodgeable residue study has been required is relatively small.

The HED requires crop residue studies for pesticides foliarly applied to food crops. Crop residue studies
involve the determination of total rather than dislodgeable residues and are required for a much higher
percentage of registered pesticides than the foliar dislodgeable study. However, such studies rarely
include more than two sampling times (immediately post-application and at the end of the proposed post-
harvest interval). Indeed, many of the studies only include a sampling time at the end of the proposed
post-harvest interval.
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Greater details on OPP- required environmental fate and residue studies are provided in Appendix C7.

3.10.6 Environmental Databases

Types of environmental data/databases relevant to computer estimates of pesticide residues for terrestrial
exposure assessments include fate, spray drift, pesticide use, crop distribution, land use, soil property,
crop property and weather. Types of pesticide residue data/databases include foliar, insect, mixed media,

and surface water.

3.10.6.1 Fate, Spray Drift, Pesticide Use, Crop, Soil, and Weather Databases

The ARS/NRCS/USDA maintains a chemical/fate pesticide properties database (which lists one or more
values for up to 18 chemical/fate properties for 335 pesticides) at www.arsusda.gov/ppdb.html. OPP
maintains a chemical/fate pesticide properties database that is comparable to that of the
ARS/NRCS/USDA database. Properties for which data are listed include hydrolysis, direct photolysisin
water, photodegradation on soil, aerobic soil, anaerobic soil, and terrestrial field dissipation half-lives
and/or rate constants. Other properties of interest for which data are listed include soil/water partition
coefficients (K, values), air/water partition coefficients (Henry's Law Constant values), and the

octanol/water partition coefficient.

Based upon studies conducted by the SDTF, the SDTF has developed a generic database containing data
on the physical properties (dynamic surface tension, shear viscosity, extensional viscosity) of various
spray tank mixtures, wind tunnel determined droplet size distributions for numerous combinations of
experimental conditions, and spray drift deposition as a function of distance for aerial spray, orchard
airblast, ground spray, and chemigation (Jones et al. 1997; Bird at al. 1995). Spray drift trials were

conducted for numerous combinations of application equipment and conditions.

Non-proprietary estimated pesticide use data are maintained by the private company Resources for the
Future. Other estimates are maintained by USDA's National Agricultural Statistical Service (NASS) at
www.usda.gov/nass/pubs/pubs.htm. Estimated pesticide use on a county scale is available through the

Census of Agriculture (conducted at 5 year intervals) at www.usda.gov/census/. To help interpret the
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results of analyses for pesticides in water samples collected as part of the on-going National Water
Quality Assessment Program (NAWQA), the USGS has used the 1992 Census of Agriculture datato
generate nationwide pesticide use maps for numerous pesticides at the following internet address:

http://water.wr.usgs.gov/pnsp/use92/.

Estimated crop distribution on a county scale is available through the Census of Agriculture whichis
conducted at 5 year intervals. Down loadable maps showing 1997 nationwide distributions of major row
crops, and 1992 nationwide distributions of additional row crops as well as numerous vegetables, fruits

and nuts can be obtained from www.usda.gov/censuy/.

Nationwide information distributed separately by state on numerous factors including land use, land
cover, mgor crops, soil properties, geographic distribution of soils, wetlands, wildlife habitats, erosion,
and conservation practices/needs is available in the National Resource Inventory (NRI) whichis
conducted by the NRCS every 5 years. Summary tables and graphs can be downloaded at the following
USDA/NRCS address: www.nhg.nrcs.usda.gov/NRI/maps.html.

The NRCS has published thousands of soil surveys conducted throughout the United States. To house
the soil survey data, the NRCS maintains a soil attribute database (MUIR) and severa related soil
geographic databases. MUIR lists for > 30,000 soil series phases within the U.S., various site descriptive
characteristics and up to 28 physical and chemical properties for up to 6 vertica horizons (layers). The
soil attribute database MUIR is linked to severa different soil geographic databases that differ in scale
(SSURGO, STATSGO, and NATSGO). The base map of the NATSGO soil geographic database is the
USDA classified Mgjor Land Resource Area (MLRA) which are described in SCS Agricultura
Handbook 296 entitled "L and Resource Regions and Mgjor Land Resource Areas of the United States.”

The National Resource Conservation Service (NCRS) internet addresses is www.nrcs.usda.gov/.

Historical daily weather data collected for many years from approximately 300 hundred of the NOAA
first order weather stations are maintained by the National Climatic Data Center (NCDC) at
www.ncdc.noaa.gov/ol/climate/climatedata.html. For use in the PRZM model, the USEPA's Center for
Exposure Assessment Modeling (CEAM) maintains a weather database specifically designed for input
into the PRZM model. Information on how to obtain the MRLA based wesather database can be obtained
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from www.epa.gov/epa_ceam/wwwhtml/ceamhome.htm.

3.10.6.2 Foliar Residue Databases

OPP has developed a method for estimating initial pesticide residues on various types of foliage that
involves multiplying maximum or typica initial residue values normalized to an application rate of 1 b
ai/acre by the application rate. Maximum and typical normalized fresh weight values are: for short grass
(240 and 125 ppm), for long grass (110 and 92 ppm), for leaves/forage (125 and 35 ppm), and for
pods/fruit (12 and 3 ppm). The normalized values were derived from data compiled from the literature by
Hoerger and Kenega (1972) and from recommendations from Fletcher et al. (1994) based on the far
greater and more recent foliar residue data contained in the University of Oklahoma UTAB database. In
evaluating the EPA methodology, Pfleeger et al. (1996) generated additiona foliar residue datafor 6
pesticides applied to 15 plant species.

OPP does not currently have access to the UTAB database or the raw data generated by Pfleeger et al.

(1995), but is currently evaluating options for gaining access to it.

Willis and McDowell (1986) performed a literature review on the interception of pesticides by crops, and
on the persistence of pesticides on foliage. In cases where areviewed article did not contain an estimated
half-life, Willis and McDowell calculated one based on tabular or graphical data and an assumption of
pseudo first order kinetics. For purposes of tabular presentation and discussion, Willis and McDowell
divided the pesticides for which data were reported into the following chemical family categories:
organochlorines, organophosphates, carbamates, pyrethroids, and other (which consist of miscellaneous

fungicides, insecticides, and herbicides).

The Beril foliar residue database is a compilation of mostly day 0-1 foliar residue data from over 500
international references primarily from the 1970s and 1980s. Data for numerous crops, pesticide active
ingredients, and formulations are included. Data are generally expressed as mg/kg fresh weight, but are

occasionally also expressed as ug/cn? leaf surface area.

As previoudly indicated, EFED has required and/or received approximately 45 terrestrial ecological
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residue/effects studies covering 15 pesticides. The studies involve treating fields with maximum alowed
numbers of applications and application rates. Various environmental media (including soil, water,
vegetation, birds, mammals, and occasionaly amphibians) were sampled at various sampling intervals.
The samples were analyzed for the parent and occasionally for major degradates as well. Observed effects
on non-target organisms were also reported. OPP is currently developing a database to house the data

from the ecological field studies.

3.10.6.3 I nsect and Other Terrestrial | nvertebrate Residue Databases

A large number of bird and mammal species eat primarily terrestrial invertebrates (insects, spiders,
earthworms, etc.) and consequently, estimation of residue levels on/in invertebrates is crucial to an
assessment of dietary exposure of wildlife. Even among bird species in which the adults eat mainly plant
material, young are usually fed mainly invertebrates in order to satisfy their high demands for protein (Gill
1989).

Terrestrial invertebrates may come into contact with pesticide residues in avariety of ways, including via
ingestion of contaminated food and/or soil, walking on or crawling through contaminated vegetation or
soil, and by being directly sprayed. Because routes of exposure are varied and chemical uptake rates are
dependent upon life history and behavior factors that are either highly variable or poorly understood, it is
difficult to model the processes that result in residues in/on invertebrates. The most straightforward
approach to the problem is to obtain and use actua field measurements. However, measurement of
residues in/on invertebrates is not part of the standard data development requirements for pesticides, and

as a consequence, such data have traditionally not been available to risk assessors.

Because of the lack of direct measurements, current EPA assessments use residue data for plantsas a
surrogate for invertebrates. Kenaga (1973) suggested that residue levels deposited on invertebrates
subjected to adirect spray application should be similar to that of plant parts with asimilar surface areato
volume ratio. On that basis, he further suggested that small insects should have residue levels immediately
after application similar to forage crops (legumes) such as alfafa, and large insects should have residue
levels similar to fruits and seeds. Following this suggestion, EPA has established nomogram vaues
(predicted residue per 1.0 Ib/acre applied) of 135 ppm for small insects and 15 ppm for large insects,
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based on the nomogram values recommended by Fletcher et a. (1994) for forage (legumes) and fruit,
respectively.

Recently, a substantial data base of field measurements of residue levels in invertebrates has become
available. Fischer and Bowers (1997) compiled measurements made in terrestrial field studies conducted
by industry in the late 1980's and early 1990's. This data base included measurements made within 24 h
of 175 foliar applications and 56 soil applicationsto actual field study sites. Descriptive statistics (mean,
standard deviation, etc.) of these data sets are given in Table 3.10-1. Measurements at foliar sites were
close to the Fletcher nomogram model estimates for fruits which EPA has assumed are a surrogate for
large insects, but much less than the corresponding nomogram values for forage crops which EPA has
assumed are a surrogate for small insects. For example, Fletcher et al. (1994) reported a mean and
standard deviation residue level per 1 Ib/acre applied in/on fruits of 5.4 and 9.8 ppm respectively. The
comparative values measured by Fischer and Bowers for invertebrates were 5.7 and 9.2 ppm,
respectively. Measured residues in invertebrates at sites where applications to the soil were made were
much lower with the mean in these cases being <1 ppm. It isnot surprising that these levels were lower
since incorporation of the chemical into the soil mechanically, or via watering, “dilutes’ the amount of

residue that is likely to contact invertebrates crawling on or in the soil at these sites.

The invertebrates in these studies were mostly collected in pitfall traps set immediately after application
and retrieved the next morning, or by sweep netting the top of the treated vegetation a few hours after
application. These collection methods have potential biases that should be considered prior to using these
data sets as a basis for setting probabilistic distributions of potential residue levelsin invertebrates. For
example, a net swept against the surface of treated vegetation is likely to remove dislodgeable residues
and these residues may in turn adsorb to the surface of insects caught in the net. Thus, these insect
samples might have artificially inflated pesticide concentrations. On the other hand, an opposite bias may
be associated with pitfall trap samples. Thisis because athough some individuals falling into the traps
“rain down” from the vegetation upon death after an insecticide application, most probably fall in while
walking across the ground. In the case of insecticide applications, which represent the vast majority of

samples in Fischer and Bower’ s data set, the most highly exposed individuals are expected to
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Table 3.10-1. Pesticide residue levels measured in terrestria invertebrates (mostly arthropods)
sampled within 24 h of 231 field applications. (Derived from data sets of Fischer and Bowers,

1997).
Residue level (ppm) per 1.0 Ib/acre applied
Application | Distribution | N
Type Mean Stan | Geometric | Minimum | Maximum
Dev Mean
Foliar Lognormal 175 5.7 9.2 21 0.04 54.0
Soil- Lognormal 56 0.60 34 0.04 0.00 25.2
incorporated

Table 3.10-2. Pesticide residue levels measured in adult and larval insects confined to the spray
swath during foliar applications to experimental field plots. (Derived from data sets of Brewer et

al., 1997).
Residue level (ppm) per 1.0 Ib/acre applied
Insect Type N
Mean Stan | Geometric | Minimum | Maximum
Dev Mean

Adult crickets and beetles 5 3.7 2.1 2.7 0.38 54
Larval armyworms and 5 2.3 2.8 14 0.33 7.2
beetles
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become immobilized and therefore have alower chance of encountering and falling into a pitfall trap. If

thiswas true, the residue levelsin pitfall trap samples might by biased on the low side.

An independent study has been conducted that controls for these sources of bias and allows one to judge
their likely significance in the Fischer and Bowers data set. Brewer et a. (1997) conducted small plot
residue trials with several compounds specifically to obtain measurements of residues in invertebrates
(Table 3.10-2). Inthesetrids, adult insects (crickets and/or beetles) and “wormy” larvae (beet
armyworms and/or beetle larvae) were placed just prior to application on the ground or on vegetation
within a spray swath and confined there until they were collected several hours later. Mobile individuals
(i.e., adults) were confined to the spray path by pinning them to vegetation or placing them in enclosures.
Residue levelsin these samples fell well within the range of observations in the Fischer and Bowers data
set. The average values for both adult insects (3.7 ppm) and larvae (2.3 ppm) were below the average of
the Fischer and Bowers data set (5.7 ppm). Thisfinding isinconsistent with the potential concern that
Fischer and Bowers' data are biased on the low side due to the use of pitfall traps as a collection method.
The Fischer and Bowers data set therefore appears to be suitable for use in defining probabilistic

distributions of potentia residue levelsin invertebrates.

3.10.6.4 Water Residue Databases

The STORET database is maintained by the U.S. EPA/OW and contains a vast amount of general water
quality and pollutant monitoring data (including for various pesticides) for many sampling sites for up to
> 30 years. STORET information can be obtained at www.epa.gov/OWOW/STORET/.

The USGS Nationa Water Quality Assessment Program (NAWQA) is an ongoing program to monitor
the surface water and groundwater within 60 study units (representing 60 river basins and/or aquifers)
widely spread throughout the U.S. Summaries and raw data for the first 3 years of sampling of the 20
study unitsin the first group are available on the internet at water.wr.usgs.gov/pnsp/. Although the
NAWQA Program is providing a vast amount of data on pesticides in surface water, the utility of the data
for terrestrial exposure assessments is somewhat limited by the data all being for flowing water instead of

for ponds and lakes.
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The ongoing USGS Toxic Substances Hydrology Program is also a substantial source of data on
pesticides in the surface water of the Midwest, Mississippi Delta, and the Mid-Atlantic Coastal Plain.
Data summaries and publication lists can be obtained at toxics.usgs.gov/toxics/regional/agchem-
midwest.shtml and at toxics.usgs.gov/toxicsregional/cotton.shtml. Although the much of the pesticide
data from the Toxic Substances Hydrology Program has aso focused on flowing surface water, some

data have also been collected on reservoirs and lakes.

Greater details on pesticide fate and residue databases are provided in Appendix C8.

3.10.7 Recommendations for I mproving Estimates and Deter minations of Pesticide Concentrations

in Environmental M edia

Listed below are a number of problems associated with estimating and/or determining pesticide

concentrations in environmental media and recommendations for alleviating them.

3.10.7.1 Deficiencies in Existing Models

Based upon the literature reviews by Golder Associates (1997), Jorgensen (1995), and our analysis of
existing models, there do not appear to be any terrestrial exposure computer models currently available
that could be used to adequately generate distributions of pesticide residues in, and doses from, all

relevant environmental media for use in probabilistic terrestrial exposure and risk assessments.

Long Term Recommendations - Deficienciesin Existing Models. A terrestrial exposure computer model

needs to be developed that could be used to adequately generate distributions of pesticide residuesin and
doses from al relevant environmental mediafor use in probabilistic terrestrial exposure and risk
assessments. The model should have the capability of estimating plant growth and distributions of
pesticide residues in bulk soil, soil pore water, bulk plants, dew, puddles, ponds, air within the canopy,
vertebrates, foliar and soil surface insects, worms, other soil invertebrates, and subterranean insects from
both spray and granule applications. It should also have the capability of ssimulating bird and other
terrestrial wildlife behavior/movement and of generating distributions of pesticide doses for those

organisms from plant, insect, and invertebrate ingestion; dew, puddle, and pond water ingestion; air
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inhalation, and dermal contact with various contaminate environmental media.

As previoudly discussed, there are several existing models which could possibly serve together as a good
foundation for the residue component of such amodel. Other existing models could possibly serve
together as a good foundation for the dose and animal movement/behavior component of aterrestrial

exposure model.

Interim Recommendations - Deficiencies in Existing Models: For interim spray residue estimates, PRZM
3, AgDRIFT, and EXAMS can probably be provided with adequate Monte Carlo simulation capabilities
long before a new terrestrial exposure model can be developed. Although they cannot currently be
coupled to Monte Carlo software such as @RISK or CRY STAL BALL, the cost of developing software
to do so is probably relatively low. The FIFRA Model Validation Task Force has funded the
development of an interface between PRZM 3 and CRY STAL BALL. If the existing models are provided

with adequate Monte Carlo simulation capabilities, they can be used to generate interim level 1 single
value estimates and level 2 distributional estimates of residues on/in soil, on/in plants, in water, and in air

within the canopy until a new terrestrial exposure model is devel oped.

Until PRZM 3, AgDRIFT, and EXAMS are provided with adequate Monte Carlo simulation capabilities,
at least two options should be considered for generating interim level 1 single value estimates and level 2
distributional estimates of residues on/in soil, on/in plants, in water, and in air within the canopy. One
option is to use the current versions of PRZM 3, AgDRIFT, and EXAMS (despite their limited to no
Monte Carlo simulation capabilities) to generate level 2 distributional estimates by running them
deterministically over multiple years and sites. The distribution of outputs generated by running the
models deterministically over multiple years and sites should adequately reflect natural year to year
variations in weather at a given site and natural variability in average values across sites.. Furthermore,
nonsensical combinations of inputs that are sometimes present in Monte Carlo simulations due to
inadequate and/or inaccurate accounting for correlation can be avoided. However, unlike with Monte
Carlo simulations, the distributional outputs will not reflect natural variability and/or measurement

uncertainty in sensitive input variables within sites.

The other option isto use simpler mass balance based equations (discussed in Appendix C9) in
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conjunction with deterministic outputs from AgDRIFT to generate interim level 1 single value estimates
and level 2 distributional estimates of residues on/in soil, on/in plants, and in water, until PRZM 3,
AgDRIFT, and EXAMS are provided with adequate Monte Carlo simulation capabilities. Such equations
can be easily entered into spreadsheets and readily undergo Monte Carlo simulations with the use of
Monte Carlo software such as @Risk, Crystal Ball, or DitGEN. The problems with such equations are
that they are not coupled to weather, do not account for the effects of weather and hydrology on residue
levels, and do not consider as many factors affecting residue levels as do PRZM 3 and EXAMS. Simple
mass balance differential equations and their solutions for various environmental media are provided for

possible interim Level 1 and Level 2 assessmentsin Appendix C9.

For interim granule residue and dose estimates, it may be possible to use the Dow/Elanco, Fischer, and
Best model. For interim dose estimates, it may be possible to use the bird spray exposure model PARET
and the bird granule exposure model developed by Dixon et al. (1998).

3.10.7.2 Fate and Residue Data Gaps for Vegetation, | nsects and Soil I nvertebrates

Thereisageneral lack of data on uptake by plants, volatilization rates from vegetation, dissipation rates
on/in vegetation, washoff from vegetation, and fate in insects and soil invertebrates. In addition,
databases of time zero and time series pesticide residue data for vegetation and insects/soil invertebrates
need to be expanded and based upon dry rather than wet weight. Such major foliar and invertebrate fate
and residue data gaps make it difficult to accurately estimate pesticide concentrations on/in vegetation ,

insects and soil invertebrates using computer modeling.

Recommendations - Fate and Residue Data Gaps for V egetation, Insects, and Soil Invertebrates.

Development of alaboratory or greenhouse terrestrial microcosm fate study that focuses on foliar and
insect/invertebrate processes, expansion of the scope of terrestrial field dissipation studies to include a
greater emphasis on foliar and insect/soil invertebrate processes and interim procedures for estimating

foliar fate parameters from other data need to be considered.

(1) The Environmental Fate and Technology Team within the EFED should be asked to develop draft

guidance on conducting laboratory, greenhouse, or small scale outside terrestrial microcosm fate studies
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that focuses on foliar and insect/invertebrate as well as soil fate processes. Such studies should include
the use of radiolabeled material and the generation of mass balance. EFED should then be asked to
submit the draft guidance to OECD as a candidate for an OECD fate guideline.

(2) EFED is currently working with Canada on draft guidance for conducting terrestrial field dissipation
studies that will include a greater focus on foliar processes. Expanding the scope to also include the
sampling and analysis of insects and soil invertebrates is being considered. The draft guidance will be
submitted to OECD as a candidate for an OECD guideline.

(3) In the interim, attempts should be made to correlate foliar fate parameters such as the overall foliar
dissipation rate constant, the volatilization from foliage rate constant, and the washoff extraction
coefficient with other fate properties. Fate parameters which should be considered for correlation with
foliar fate parameters include dissipation rate constants in soil, photodegradation rate constants,
hydrolysis rate constants, Henry's Law constant, and the octanol/water partition coefficients. Correlations
with properties of the formulation and/or additives such as surfactants may also be necessary. Although
developing a regression model for estimating foliar dissipation rates appears to be adifficult task, it is
needed because the default assumption that the foliar dissipation rate is equal to the dissipation rate in soil

appears to be overly conservative in most cases.

A number of correlations relating uptake by plants to fate parameters such as the octanol/water partition
coefficient are aready in the literature. (See Section 3.10.2 and Appendix C4).

3.10.7.3 Fate and Residue Data Gaps for Soil and Water

Fate and residue data gaps for soil and water include:

(1) Frequently inadequate fate data to extrapolate transformation rates in one soil or water/sediment

system under a narrow range of experimental conditions (such as those for temperature and soil moisture)

to other soils or water/sediment systems.

(2) A generad lack of data on adsorption/desorption kinetics. The assumption by most models of chemical
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equilibrium between soil and water may be a major source of error in some cases.

(3) The number of sampling intervalsis generally too low to estimate rate constants for their formation
and decline of degradates. (See Section 3.10.4 and Appendix C6.) In addition, separate metabolism
studies on the degradates are seldom performed. Consequently, it is generally not possible to use

modeling to estimate the concentrations of major degradates in the soil.

(4) Field data on concentrations of pesticides in soil are fairly extensive due to terrestrial field dissipation
studies which are required by OPP for many terrestrial uses. However, due presumably to non-uniform
applications and/or to inadequate numbers and size of samples and/or inadequate numbers and timing of
sampling intervals, the data are frequently too variable or inadequate to adequately characterize the

dissipation of the parent and the formation and decline of degradates.
(5) Most of the available data on pesticide residues in surface water are for flowing water. Dataon
pesticide residues in ponds, puddles, and dew on foliage are more appropriate for use in terrestrial

exposure assessments.

Recommendations - Fate and Residue Data Gaps for Soil and Water: The recommendation numbers

below correspond to the problem numbers above:

(1) The September 1997 draft OECD guideline for conducting laboratory transformation in soil studies
does recommend conducting studies on 4 different soils which represents a vast improvement on current
OPP guidance requiring only one soil. However, OPP is aso recommending to OECD that at least as an

option, studies also be conducted at various moistures and temperatures.

The July 1997 draft OECD guideline for conducting laboratory transformation in water/sediment studies
does recommend conducting studies on 2 different water/sediment which represents an improvement on

current OPP guidance requiring only one water/sediment system. However, OPP is also recommending

to OECD that 2 additional water/sediment systems (to give atotal of 4) also be included.

(2) OPP has recommended to OECD that the determination of adsorption/desorption rate constants be
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included in the final OECD Guideline 106 for Adsorption/Desorption. PRZM3 and EXAMS do not
currently simulate adsorption/desorption kinetics primarily because such data are rarely available. If
adsorption/desorption data became routinely available, the models could be readily modified to simulate

at least first order adsorption and desorption kinetics.

(3) OPP has recommended to OECD that the additional sampling intervals necessary to better quantify
the formation and decline of major degradates be included in OECD guidance for conducting laboratory

transformation in soil and water/sediment studies.

(4) EFED is currently working with Canada on draft guidance for conducting terrestrial field dissipation
studies that will strengthen guidance on ensuring more uniform applications, adequate numbers and sizes

of samples, and adequate numbers and timings of sampling intervals.

(5) Guidance for sampling ponds (when available), puddles and dew should be considered for inclusion in

the guideline being currently developed for conducting terrestrial field dissipation studies.

3.10.7.4 Fate and Residue Data Gaps for Air

As previously mentioned, literature data on pesticide concentrations in air are somewhat limited and are
generaly on high use herbicides in the mid-west, in California, and around the Great Lakes (Mg ewski
and Capel 1995). Data on pesticide concentrationsin air derived from OPP- required studies are also
limited. Volatility from Soil studies have only been infrequently required. Worker Inhaation Exposure
studies are called for more frequently, but only for pesticides thought to be of potential risk to humans.

Data collected from worker inhalation studies may be of use in estimating average pesticide
concentrations in air during application (though at a sampling height generally higher than the air inhaled
by mammals and birds on the ground). However, such studies generally provide post-application data for
only one or two days corresponding to proposed re-entry intervals. Consequently, such studies will
generaly be of little value for estimating post-application declines in pesticide concentrationsin air. As
previously mentioned, there is very little information on foliar volatilization rate constants and they are

difficult to separate out from overall foliar dissipation rate constants.
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Recommendations - Fate and Residue Data Gaps for Air: The guidance for conducting terrestrial

microcosm and field dissipation studies should include conditional provisions for the collection of air
samples at a number of sampling intervals and heights, and analysis of the samples for parent and mgjor
degradates. The emphasis on air sample collection should be on sampling within canopies. Based upon

the data, fluxes and foliar volatilization rate constants should be estimated when possible.

3.10.7.5 Selection and Fitting of PDFsfor Modeling I nput and Residue Data

The generation of distributions of estimated pesticide concentration versus time series in environmental
media from Monte Carlo computer simulations requires the selection and fitting of PDFs to sensitive
input variables such as initial resdue values, dissipation rate constants, and equilibrium partition

coefficients. In many cases, the available data are inadequate to accurately select and fit PDFsto it.

Recommendations - Selection and Fitting of PDFs for Modeling Input and Residue Data: Existing

databases containing time zero and time series or rate constant data on pesticide residues on/in
environmental media such as vegetation and insects/soil invertebrates need to be analyzed and expanded.
Databases containing information on modeling inputs also need to be analyzed and expanded. Existing
data needs to be properly divided into categories such as the plant categories recommended by Hoerger
and Kenega (1972) and chemical families as was done by Willis and McDowell (1986). Goodness of fit
software that can be run iteratively need to be used to help select and fit (parameterize) PDFs to
distributions of modeling input and to properly categorized distributions of initial pesticide residuesin

environmental media

3.10.7.6 Establishing Correlations Between the I nput Variables for Monte Carlo Simulations
To avoid the random formation of nonsensical combinations of input values during Monte Carlo
simulations, any correlations between sensitive input variables need to be accurately determined and

preserved during the random sampling. The data and/or resources necessary to do so is often lacking.

Recommendations - Establishing Correlations Between the Input Variable for Monte Carlo Simulations:

Sengitivity analysis need to be performed to focus resources and analysis on sensitive input variables. An
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effort should be made to obtain the necessary data and resources to adequately characterize (and preserve

during random sampling) correlations between sensitive input parameters.

3.11 OUTPUTS FROM AND INPUTSTO AN EXPOSURE ASSESSMENT

The primary output of a probabilistic exposure assessment for a given pesticide is a dose PDF for each
pesticide use area and non-target species/population of concern. This section will describe how a dose
PDF can be estimated with a Monte Carlo simulation using as input, distributions of animal characteristics
affecting dose and distributions of parameters that affect pesticide concentration versus time seriesin

environmental media.

3.11.1 Monte Carlo Based Generation of a Dose PDF

A dose PDF is generally obtained by performing a Monte Carlo simulation. In a Monte Carlo smulation,
statistical distributions in the form of PDFs and/or empirical non-parametric distributions are assigned to
one or more of the input variables affecting dose (the output variable). The computer algorithm used to
estimate values of dose from a dose equation is then run numerous (generally thousands of ) times. For
each of the runs, the values of the input variables for which statistical distributions have been assigned are
randomly selected from their distributions. The random selection of input values for each run gives
different combinations of input values and therefore a different resulting dose estimate for each run. The

thousands of runs results in a dose PDF.

As can be seen from the dose equationsin Sections 3.4 - 3.9 as well as the pesticide concentration
equations in Section 3.10 and Appendix C4, input variables for which a PDF or empirical non-parametric

distribution can be assigned include:

. One or more animal characteristics affecting dose (such as food ingestion, water ingestion and
body weight), and/or

. One or more parameters affecting pesticide concentration versus time series in environmental
media (such asinitial concentrations, plant biomass, dissipation rate constants and equilibrium

partition coefficients).
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To generate dose PDFs using Monte Carlo simulations, it is obviously necessary to use afate model with
the ability to run Monte Carlo smulations. In addition, any substantial correlations between input

variables must be taken into account to avoid nonsensical input combinations.

3.11.2 Statistical Distributions of Pesticide Residue and Fate Data

In cases where the available pesticide residue and/or fate data are adequate to do so, the frequency
predictions for various intervals by various PDFs and the same PDF with iterative changesin theinitial
estimates of distribution parameter values can be compared to actual frequency of data within the
intervals to determine the PDF and the parameter values of the PDF that best fit the observed data. One
of the most frequently used goodness of fit testsis the chi-square test. The chi-square statistic upon
which the test is based is given by (Ott 1995):

j=m
=1

where,

X?= chi-square statistic

J = index for different intervals

O, = observed cumulative fraction of datain interval |

E = PDF estimate cumulative fraction of data within interval |

m= number of intervals

The chi-square test is used to determine the probability that a PDF does not fit the data. Because the chi-
square statistic increases with increasingly poor fit (Ott 1995), it can be aso be used to rank PDFs as
indicated by the magnitude of the chi-square statistic.

Software designed specifically for Monte Carlo smulations such as @RISK and CRY STAL BALL
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include as standard or as optional modulars, algorithms for fitting PDFs to observed data.

The lognormal distribution is the one most commonly used to describe environmental data (Ott 1995).
However the normal, uniform, and triangular distributions are also frequently used. Although caution
should be observed in selecting a distribution in cases where the available data are inadequate to
adequately test it, there is some justification in selecting the lognormal and in some cases the normal
distribution to describe limited sets of environmental data (Seiler and Alvarez 1995). However, Seiler
and Alvarez (1995) are highly critical of the frequent use of the uniform and triangular distributions as
default distributions to describe limited or no environmental data. That is due in part to discontinuitiesin

those distributions.

For some input variables, the available data may be adequate enough to statistically fit it to a PDF for use
in Monte Carlo simulations. For other input variables, the data may not be adequate enough to fit it to a
PDF, but is adequate enough to accurately compute a mean and variance. In such cases it may sometimes
be possible to assume a PDF type such as the lognormal distribution based upon any literature that
indicates that the data for that variable generally fits well to a specific type of PDF. The mean and
variance can then be transformed to estimate the values of the PDF parameters. For any input variables
for which the data and literature are too limited to generate either a best fit or hypothetical PDF, an

empirical non-parametric distribution or a single value will have to be used in the Monte Carlo smulation.

3.11.3 Hypothetical Lognormal PDFsfor UTAB Time Zero Foliar Residues

Although the raw time zero foliar residue datain the UTAB database is not currently available to
determine a best fit distribution for the data, Fletcher et al. (1995) did provide the arithmetic means and
standard deviations of UTAB data for the Hoerger and Kenega 1972 crop categories (Table 3.11-1). For
illustrative purposes, we have computed the In transformed means and standard deviations from
Equations 1.6-3 and 1.6-4 (Table 3.11-1) and used them to generate hypothetical lognormal distributions

of time zero foliar residue data for each of the categories as shown in Figures 3.11-1 and 3.11-2.

As can be seen from Figure 3.11-1, the theoretical lognormal distributions for the long grass, leafy, and

forage categories are somewhat comparable whereas the one for short grassis
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Table 3.11-1) Arithmetic (m, and s) and lognormal transformed (m, and s) means and standard
deviations for time zero foliar residues for the plant categories recommended by Hoerger and
Kenega (1972). Arithmetic values are taken from Fletcher etal 1995. Transformed values are
computed from equations 193 and 194. Vaues are for applications of 1 |b ai/acre and are in ppm
(mg/kg) wet weight.

Category m, S, m, S Max Min

Short Grass | 84.8 60.3 4.24 0.640 194 15.3
Long Grass 36.0 40.6 3.17 0.906 197 0.12
Leaves 35.0 45.0 3.07 0.988 296 0.23
Forage 45.0 56.7 3.33 0.975 350 0.05
Pods /Seeds 5.4 5.9 0.809 1.07 24.0 0.05
Fruits 5.4 9.8 0.958 1.21 40.7 <DL
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substantially different. It is substantially shifted to the right thereby indicating substantially higher time
zero values for short grass than for the other categories. As can be seen from Figure 3.11-2, the
theoretical lognormal distributions for fruit and for pods/seeds are also somewhat comparable with time

zero residue values being much smaller than for the other plant categories.

Figures 3.11-1 and 3.11-2 support the Fletcher et al. (1995) recommendations that the forage and |eaf
categories be combined into a single broadleaf category and that fruits and pods/seeds be combined into a
single category. However, the long grass distribution actually appears to be more comparable to the one
for the leaf category than the one for the forage category that Fletcher et al. recommended be combined
with the leafy category.

3.11.4 Hypothetical L ognormal PDFsfor Foliar Dissipation Half-lives

Willis and McDowell (1986) reported arithmetic means and standard deviations of dislodgeable and total
foliar dissipation haf-lives for 4 different chemical families (Table 3.11-2). For illustrative purposes, we
have computed the In transformed means and standard deviations from equations 1.6-3 and 1.6-4 (Table
3.11-2) and used them to generate hypothetical lognormal distributions of dislodgeable and total foliar
dissipation half-lives for 4 chemical classes as shown in Figures 3.11-3 and 3.11-4.

As can be seen from Figure 3.11-3, the theoretical lognormal distributions of dislodgeable foliar half-lives
are similar for carbamates and organophosphates but are substantialy different for organochlorines and

for pyrethroids. As can be seen from the arithmetic means in Table 3.11-2 as well as by the shift in Figure
3.11-3, pyrethroids are the most persistent chemical family with respect to dislodgeable residues followed

by the organochlorines.

As can be seen from Figure 3.11-4, the theoretical lognormal distributions of total residue foliar
dissipation half-lives differ substantially for the 4 chemical classes. As can be seen from the arithmetic
meansin Table 3.11-2 as well asthe shiftsin Figure 3.11-4 compared to Figure 3.11-3, half-lives are
somewhat longer for total residues than for dislodgeable residues. Also, the pyrethroids followed by the

organochlorines again are generally more persistent than the
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Table 3.11-2) Arithmetic (m, and s) and lognormal transformed (m, and s)) means and standard
deviations for dislodgeable and total foliar dissipation half-lives for the plant categories
recommended by Hoerger and Kenega (1972). Arithmetic values are taken from Willis and
McDowell 1986. Transformed values are computed from equations 193 and 194. Half-lives are

in days.

Carbamates Organochlor Organophos Pyrethroid

Didodge

m, 2.3 3.4 2.5 4.9

S, 2.3 2.7 2.8 2.3

m, 0.486 0.979 0.510 1.49

S, 0.833 0.699 0.902 0.446
Total

m, 2.7 5.8 3.3 5.9

s, 1.2 6.0 2.6 5.0

m, 0.903 1.39 0.952 1.504

S, 0.425 0.853 0.649 0.736
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organophosphates and carbamates.

Variations of reported foliar half-lives for the same chemical are often comparable to variations within the
same chemical families and sometimes even across chemical families. Also, most foliar half-lives are less
than two weeks even for chemicals with much higher half-livesin soil and for chemicals with wide
variations in other fate properties as well. That makes trying to develop regression equations to predict
foliar dissipation half-lives from fate properties such as half-livesin soil, photodegradation half-lives,
Henry's Law constant and the octanol water partition coefficient difficult. However, attempts will
continue. In any event, assuming that the foliar half-life isidentical to the soil half-life asis frequently

done appears to be overly conservative in most cases.

3.11.5 Hypothetical Lognormal PDFsfor Chlorpyrifos Half-livesin Soil and Soil/Water Partition

Coefficients

Based upon chlorpyrifos data provided by Laskowski (1998), arithmetic means and standard deviations

were computed as follows for chlorpyrifos:

. Half-livesin laboratory aerobic soil metabolism studies and terrestrial field dissipation studies,

. Soil/water partition coefficients (K,s) in laboratory adsorption/desorption studies, and

. Organic carbon normalized soil/water partition coefficients (K.S) in laboratory
adsorption/desorption studies (Table 3.11-3).

For illustrative purposes, we have computed the In transformed means and standard deviations from
eguations 1.6-3 and 1.6-4 (Table 3.11-3) and used them to generate hypothetical lognormal distributions
of those chlorpyrifos variables as shown in Figures 3.11-5 and 3.11-6. For the final report, we hope to
have determined the actual distribution types that best fit the chlorpyrifos fate data and present them as
examples instead of the hypothetical lognormal distributions (unless the lognormal distributions are the
best fit distributions).
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Table 3.11-3) Chlorpyrifos arithmetic (m, and s) and lognormal transformed (m, and s) means
and standard deviations for |aboratory aerobic soil metabolism half-lives, terrestria field
dissipation half-lives, soil/water partition coefficients (K,s), and organic carbon normalized
soil/water partition coefficients (K,.s). Data are from Laskowski (1998). Transformed values are
computed from equations 193 and 194. Half-livesareindays. K, and K, valuesarein L/kg.

m(x) s(x) m(y) sy) Max Min
Aer ty, 28.7 31.8 2.96 0.895 120 16
Terrt,, 27 24.2 3.00 0.768 91 4
K, 106 87.4 4.40 0.720 400 13
001*K, | 795 72.1 4,07 0.775 310 9.7
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3.11.6 Lognormal CDFsfor Invertebrate Residue Data

Although it is customary to express the statistical distributions of input variables as PDFs, they can also
be readily transformed to and expressed as their corresponding CDFs and readily transformed back to

PDFs. Examples are as follows.

The measurements contained in the Fischer and Bowers data sets were provided by the authors to the
Terrestrial Work Group. Following the approach taken by Hoerger and Kenaga (1972) and Fletcher et
al. (1994), the authors normalized invertebrate residues to a 1.0 Ib/A application rate. The combined data
sets include measurements made within 24 h of 231 applications under awide variety of environmental
and agricultural conditions as part of 24 field studies of 10+ active ingredients. Observations were sorted
from smallest to largest and cumul ative exceedence probability curves (i.e., probability of equaling or
exceeding a concentration) were plotted (Figs 3.11-7 and 3.11-8). The exceedence probability curves
appeared to follow lognormal distributions (r? = 0.99 for foliar applications, r? = 0.96 for soil
applications, p < 0.01 in both cases). Mean values were 5.7 ppm and 0.6 ppm for foliar and soil-
incorporated applications respectively. However, because distributions were lognormal, the geometric
mean is a better representation of the central tendency of these data. Geometric mean values were 2.1
and 0.04 ppm, respectively. For foliar applications, the residue level per 1.0 |b a.i./acre applied in/on
invertebrates had approximately a 50% chance of exceeding 2 ppm, a 10% chance of exceeding 16 ppm,
and a 5% chance of exceeding 23 ppm. For soil applications, the residue per 1.0 |b a.i./acre applied in/on
invertebrates had approximately a 50% chance of exceeding 0.03 ppm, a 10% chance of exceeding 0.5
ppm, and a 5% chance of exceeding 1.3 ppm.

For screening assessments, a5 or 10% exceedence value (i.e., aresidue level expected no more than 5-
10% of the time) may be selected from these distributions and used as a high-end estimate of residue
levelsin invertebrates. Such values would be analogous to the Fletcher nomogram values (Fletcher et al.
1994) currently used by EPA for plant matrices. For higher tier exposure assessments, lognormal
distributions with means and standard deviations listed in Table 3.10-2 may be used as an input into a

simulation modd!.
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Fig.3.11-7. Exceedence Probability Curve for Residue Levels Measured in Invertebrates Collected within
24 h of Foliar Applications. Data (N=175) from Fischer and Bowers (1997). A log-linear regression
demonstrated a highly significant relationship (r? = 0.99, p < 0.01).
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Fig. 3.11-8. Exceedence Probability Curve for Residue Levels Measured in Invertebrates Collected
within 24 h of Soil Applications. Data (N=56) from Fischer and Bowers (1997). A log-linear regression
demonstrated a highly significant relationship (r? = 0.96, p < 0.01).
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3.11.7 Distributions of Biological Factors Affecting Dose

Information concerning distributions for biological factors affecting dose is limited. However, many of
those factors such as food ingestion rates, water ingestion rates, inhalation rates, and skin surface areas
can be estimated by substituting the body weight into equations provided in the EPA Wildlife Exposure
Handbook and included in Sections 3.4 through 3.9. Therefore, in cases where distributions of the body
weight can be estimated, distributions of the various biological factors depending on body weight can also
be estimated.

312 LEVELSOF REFINEMENT FOR EXPOSURE ASSESSMENT

The preceding sections have shown how each input to the equations for exposure may be estimated in a
number of ways. These range from simple, generic, deterministic estimates suitable for screening
assessments, to very refined estimates using information specific to the scenario under consideration and
taking more account of variation and uncertainty. These methods can therefore be organized into a series
of ‘Levels of Refinement’, asillustrated in Table 3.12-1 for exposure through contaminated food.

Methods for estimating exposure by other pathways can be organized in asmilar way.

It is envisaged that organizing assessment methods into Levels of Refinement may help assessors to
keep track of the status of the assessment and decide which parts of the exposure estimate to refine at
different stages. The Terrestrial Workgroup intends that the Levels should be used in a flexible way,
with different parameters being treated at different Levels according to the needs of the individual

assessment. The process of refining the assessment is considered in more detail in Chapter 6.

Level 1isintended as a simple Screening Level Assessment. The inputs are point estimates, though some
represent conservative assumptions rather than average or typical estimates. The output at Level 1
comprises point estimates of dose for each time scale (short, medium and long-term as discussed in
Chapter 2). The purpose of Level 1isto assist the assessor in deciding which routes of exposure, if any,

are significant enough to warrant more detailed analysis a higher levels of refinement.

Level 2 isintended to introduce ssmple distributions, either hypothetical (if data are not available
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Table 3.12-1. Summary of levels of refinement for the estimation of exposure via contaminated food. Exposure by other pathways

may betreated in similar ways.

Level 1 Level 2 Level 3 Level 4
Parameter
PT — - Conservative assumption- - Allow PT <1, i.e. take - If appropriate, take account | - Field data on actual PT
proportion of PT=1 (100% of food account of untreated of time spent in drift zone in relevant conditions
food from obtained from treated area) area. and residue levels there - Landscape models using
treated area - Use exigting information GISto overlay animal
and expert judgment to movements on residue
estimate distribution of distributions
PT
TFIR —totd - Use existing estimates of - Estimate distribution - Estimate distributions of - Field data on actua FIR
food intake intake, e.g. Nagy’s based on confidence TFIR from original dataon in relevant conditions
rate (dry equations intervalsfor Nagy’'s FMR, GE and AE (Eg. 3.6-
weight) - Adjust to conservative eguations 11)
assumption (e.g. 3 x - Allow food intake to - Take account of mixed diets
average daily intake) vary over time - Assess relative frequency of
- For medium/long-term short-term scenario (e.g.
exposure, assume feeding gorging behavior)
rate constant over time
PD — - Conservative assumption— | - Hypothetical - Obtain raw data underlying | - Field data on actual PD
proportion of diet consists entirely of the distributions based on published values and use to in relevant conditions
diet fromeach | food type with the highest published data estimate distributions for
food type residues - Consider seasond relevant scenarios
variations
FDR —Fresh |- Use average estimates for - Use confidence limitsfor | - Obtain raw data underlying |- Field data on actual FDR
to dry weight relevant food types, from these estimates to define published values and use to in relevant conditions
ratio. the literature hypothetical distributions | estimate distributions - Consider dessication of
food items (e.g. dead
INSECts)
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AV - - Conservative assumption- - Estimate AV from food consumption in dietary toxicity - Conduct specia studies
avoidance AV =0 (animal does not tests to decide whether avoidance may be important in with captive animalsto
avoid contaminated food) short- and long-term exposures. quantify the distribution
of AV under the range of
relevant conditions.
Separate studies required
for short- and long-term
scenarios
C, residuesin | - Estimateinitial resdues - Models (under - Models (under development) - Field studies to vaidate
food. from application rate using development) - Obtain raw data underlying and/or calibrate models,
empirical relationship (e.g. |- Use hypothetical published values and use to or measure distributions
Fletcher et al.) distributions for initia estimate distributions of Cinreevant
- Estimate dissipation over residues and conditions
time using data from Willis dissipation based on
& McDowell, or soil confidence limits from
degradation literature, if available
. For vertebrate prey, model
intake and depuration to
estimate body burden
- Use average estimates for - Use confidence limits | - Allow for age/sex differences |- Field dataon actua W in
W, body relevant species, from the for these estimatesto | - Obtain raw data underlying relevant conditions
weight literature define hypothetica published values and use to
distributions estimate distributions
OUTPUT OF | . Dose estimates are - Moreredlistic - Asfor Level 2, but taking - Distributions of doses
EXPOSURE conservatively high due to estimates based on account of additional factors over time based on field
ASSESSME conservative assumptions approximate (e.g. drift zone, mixed diets) datafor specific
NT for PT, TFIR, PD, AV and distributions for some | and using better information scenarios.
C parameters for input distributions - If landscape models

- Point estimate of dose for

short-term exposure

- Time series of point

estimates of dose for
medium and long-term
exposures

- Distribution of doses

for short-term
exposure

- Distribution of doses

for each time point in
medium and long-term
exposures

- Estimate frequency as well as

magnitude of short-term
exposures

used, output could
include maps of spatia
distributions of exposure
at different pointsin
time.

3-115




S o1 B~ WN R

\‘

10
11

12
13
14
15
16
17
18

to develop distributions) or based on summary statistics from the literature, such as means and standard
deviations. The input distributions are generic, i.e. applicable to awide range of pesticides and scenarios,
and not specific to the assessment in hand. For medium and long term exposures, the output at Level 2
and above is adistribution of doses at each point in time (e.g. daily). The purpose is to help the assessor
to begin taking account of variability and uncertainty, and to identify (with the aid of sengitivity analysis)

which parameters are most important so that they can be targeted in further refinement if necessary.

Level 3 provides for further refinements in parameter estimation and the quantification of uncertainty.
Distributions are still generic and based on existing data, but are based on the original data rather than
summary statistics. The data may be used directly to provide an empirical distribution or standard

distributions may be selected (e.g. normal, lognormal etc), based on statistical tests of goodness of fit.

Again, sengitivity analysis may help to decide which parametersto refine further, if any.

Level 4 isintended to focus on site- and species-specific conditions relevant to particular risk assessment
scenarios. It may often require the generation of new data, including field studies focussed on providing
the specific information which is required. However, it is expected that only a small proportion of
assessments will proceed to Level 4. Even when thisis necessary, only afew critical parameters will
require estimation at Level 4, with the others continuing to be treated at lower Levels. If an explicit
gpatial model (e.g. GIS) is used, the outputs could include maps of the spatial distribution of exposure at

different pointsin time (e.g. daily).
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4.0 EFFECTS ASSESSMENT

4.1 OBJECTIVE AND SCOPE OF EFFECTS ASSESSMENT

4.1.1 Introduction

An effects assessment quantifies the relationship between the dose administered (e.g.
dermal, oral) or the concentration of a pesticide in media (e.g. air, food) and the effects
endpoint. The objective is to evaluate and present measures of effectsin away that they
can, in conjunction with the exposure assessment, be related to assessment endpoints and
ultimately to management goals. This requires the use of dose-response studies conducted
under controlled laboratory conditions using standard laboratory animals. The results are
then “extrapolated” to afocal speciesin afield situation, thus defining the effects profile.
(See Figure 4.1-1.) Thistransition from alaboratory-derived dose-response to an effects
profile has traditionally assumed a one to one relationship with little accounting for the

variables which will affect the toxicological response.

The purpose of this chapter isto (1) identify and quantify the sources of uncertainty and
variability involved in defining the effects profile and (2) to identify and propose the data
regquirements, the methods, and the algorithms which provide measures of the nature and

magnitude of the effects.

The output of the effects assessment is an effects profile that estimates the probability and
magnitude of a specified effect to a species or taxonomic group at a given level of
exposure along with the uncertainty of that estimate. The effects profile quantifies the
relationship between exposure to the pesticide and the assessment endpoint. If the focus of
the assessment endpoint (i.e. the species of concern) is the same as the speciestested in a
toxicity study, the effects profile may be the same as the dose-response relationship
derived from the study. More often, however, the assessment is focused on species that

are not likely to be tested; therefore the effects profile needs to account for the various
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Figure 4.1-1. Transition from labor atory-derived dose-responseto an effects profile.
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sources of uncertainty known to exist in estimating toxicity (Figure 4.1-1). Consequently, the
nature of the effects profile varies with the amount of data available, the desired level of certainty

for the analysis, and the nature of the assessment endpoints.

Although some sources of uncertainty can be incorporated into the effects profile, other sources
remain that are not quantified and difficult or impossible to address. One of the greatest unknowns
is the relationship between laboratory results and effects in the field. Thisis amajor problem, not
only for probabilistic assessments, but also with the current use of the quotient method. Although
it is possible to apply a known quantity of pesticide and document resulting effects, the exposure
to individual animals at afield site varies greatly and is not directly quantifiable. Consequently, the
relationship between laboratory tests and field responses can only be defined crudely. Other
unquantified sources of uncertainty include the differences in inherent sensitivity between
laboratory and field populations, the representativeness of the exposure scenario simulated in the

laboratory, and the variable influence of stress of captivity on toxic responses among species.
4.1.2 Overview

4.1.2.1 Route of Exposure

Although the Terrestrial Workgroup focused on the oral route of exposure for purposes of
developing probabilistic models, it was recognized that dermal or inhalation exposure may be
important in the field in some cases. The role of the route of exposure is discussed in Section
4.1.3.1.

4.1.2.2 Data Needs

The robustness of the effects assessment is determined by the quantity and quality of the data.
For many new pesticides only a single toxicity value may be available, or there could be a much

more extensive data set in the case of many existing pesticides. Ultimately the data base has a

controlling influence on the assumptions necessary to generalize from test species to focal species,
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and the resulting uncertainty associated with such extrapolations. Further, the assessment is
dependent on the level of uncertainty considered acceptable (i.e precision of the estimate of
effects) and the specificity of the assessment endpoint(s). Laboratory toxicity tests provide the
most common effects data available. Current test requirements, their design, and suitability for

probabilistic assessments are examined in Section 4.2.

4.1.2.3 The Dose-Response Relationship

The basic element of an effects assessment for direct short-term direct toxicologica effectsisthe
dose-response relationship derived from acute oral or dietary tests with laboratory test species.
The dose-response relationship describes dependence of measures of effects, usualy mortality, on
exposure to a pesticide over time. Each test provides a quantitative description of this
relationship for one species under the conditions of the test. For any given dose, the dose-
response for an acute study gives the probability that an individual will be killed at that dose, so
that the dose-response is inherently probabilistic. In addition, the parameters of the dose-response
(e.g., LC50, LD50, or slope) will be subject to various uncertainties. Sources of uncertainty
include the statistical error associated with an individual study (conventionally represented by
standard errors and confidence intervals) and various extrapolations (e.g., laboratory to field or
across species). This variability and uncertainty can be expressed in the form of distributions that

can be used in probabilistic assessments in place of the point estimates such as an LC50 or LD50.

4.1.2.4 Factors That I nfluence the Dose-Response Relationship

Severa factors limit the ability of laboratory-derived dose-response models to predict the
magnitude and extent of effects on natural populations. The relationship between laboratory tests
and field responses can only be defined crudely because of the inability to clearly define the
relationship between laboratory results (the dose-response relationship) and effectsin the field.
Field investigations can quantify effects on non-target species following the application of a
known quantity of pesticide. However, exposure of individual animals at afield siteis not

guantifiable. Therefore a dose-response relationship can not be directly determined.
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Other sources of uncertainty in laboratory to field extrapolations include the differencesin
inherent sengitivity between laboratory and field populations, the adequacy of the exposure
scenario simulated in the laboratory, and the influence of the stress of captivity on the toxic
response of test species. Furthermore, factors such as differences in age sensitivity, nutritional or
breeding status all can affect the vulnerability of individuals to a stressor. The most important of
these factors are examined in Section 4.4 for their effect on the variability in sengitivity within
populations. Unfortunately too little is known to currently propose ways to quantify the

uncertainty associated with each one.

As noted previoudly, assessments are most often required for focal species for which toxicity data
are not available. Interspecific variability is afactor that introduces uncertainty in the dose-
response relationship. Variation among species in sensitivity to pesticides has been demonstrated
to be substantial and may be the greatest source of uncertainty in providing effects estimates of
untested species. To interject alevel of predictability in the effects assessment, the uncertainty
associated with extrapolating effects on test species to the focal species must be considered.
Methods for including this uncertainty in probabilistic assessments are discussed in detail in
Section 4.5.

4.1.2.5 Higher-tier Dose Response Methods

Currently, the dose-response relationship is usualy quantified using the probit model, where that
model can be fitted to the data. Sometimes only a LC50 or LD50 is available. As well as
discussing how to use probit results in a probabilistic analysis (or results of some other empirical
model such as the logistic model), this chapter discusses at some level a variety of more refined
options that may be considered for higher-tier assessments. In particular, incorporation of

pharmacokinetic information may be desirable at higher tiers (Section 4.1.3.3).
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4.1.2.6 Sublethal and Indirect Effects

A full accounting of sublethal effects resulting from sublethal exposure is generally lacking. These
effects may result from intoxication related to the mechanism of action of the pesticide, side
effects unrelated to the toxic mechanism (e.g. egg shell thinning resulting from DDT exposure), or
second generation effects. If information is available, it may not be quantifiable and thus may
have to be dealt with qualitatively. A discussion of the scope of sub-lethal effects and their impact
isdiscussed in Section 4.3.

In this same section the indirect effects of pesticides are also discussed. These occur when the
direct toxic effects of pesticides on individuals of a species have consequences unrelated to the
toxic effect of the compound on other individuals of the same species or other species. While
these effects are well beyond the capacity of existing probabilistic risk assessment methods, they
should be acknowledged.

4.1.2.7 Completing the Effects Assessment

The estimated dose-response relationship for a species of concern conceptually may be derived as

follows:

DRR= DRRyested * Intrae * InterF * SublF

where,

DRR; = dose-response relationship for speciesj;

DRRyeseq = dose-response relationship for one or more tested species,

IntraF = intraspecific factor is a unitless index reflecting the range of variation among
studies, among age groups, etc. (default = 1);

InterF, =  interspecific factor is aunitlessindex to account for variation among species,
the index may be specific for species | based on body size (Baril and Mineau 1996)
or known relationship to tested species (index = 1 if species| isthe tested species);

SublF = sublethal factor is a unitless index to account for observations of sublethal

4-6



10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

effects in laboratory toxicity tests that may have ecological implicationsin the field,
(default = 1).

In addition to serving as a conceptualization of sources of uncertainty and variability, this scheme
has been implemented partially in a quantitative manner. Multiplicative, stochastic factors can be
generated corresponding to a subset of the components indicated. Levels of complexity may be
added to this formula as the assessment process moves through succeeding levels of refinement.
Section 4.6 discusses the process of moving through progressively more complex levels of effects
assessment, where the type and amount of data used changes and the uncertainty accounted

increases and/or is reduced.

4.1.3 Scope of Effects Assessment

From the time pesticides are applied and the residues settle on the landscape to the time when a
toxic response is induced in wildlife, a complicated chain of events takes place. This sequence,

illustrated in Figure 4.1-2, involves

A route of exposure (oral, dermal, inhalation), which determines how and when the

individuals are exposed and the rate and amount of uptake occurring;

The pharmacokinetic properties of the chemical within the test organism, which determines

the rate of accumulation and elimination of the internal dose; and

The interaction of accumulated dose with the target site, which causes the toxic response.
This sequence of events has atime scale, ranging from minutes to weeks, and is strongly affected
by numerous factors, some inherent to the biological characteristics of the species, and others

which originate from the environmental conditions in the field. As can be deduced from Figure

4.1-2, there are innumerable combinations of time scale, pharmacokinetic properties and routes
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1 Figure4.1-2 Sequence of eventsleading to atoxic response in exposed birds
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of exposure not to mention the other variables. When products are tested for their toxicological

effects only three sequences of the numerous possible scenarios are examined:

Test Route Timescale Toxic endpoint

Acute oral LD50 Ora minutes (or 1ess) Mortality

Acute dietary LC50 Oral days (5) Mortality

Avian reproduction Ord weeks (20) Reproductive endpoints

Furthermore, the variables that may affect the results are controlled under laboratory conditions.
Thus, extrapolating study results on test species to the focal speciesin the field includes not only
the consideration of the numerous variables not dealt with in the studies, but also the route of
exposure, time scale of exposure, and uptake as these factors relate to the dose calculations in the
laboratory and in the field. The routes of exposure, the units of dose used in the effects
assessment and how they relate to time scale, and alternate methods to arrive at the dose are
discussed in the next section.

4.1.3.1 Routes of Exposure

The current testing with birds is conducted through oral dosing. However, the dermal route of
exposure can be the dominant route for certain compounds and/or particular use circumstances.
(Driver 1991.) Yet, standard risk assessment practices have not taken into account the other
potential routes such as dermal and inhalation, and testing of compounds via other routesis
presently not considered. One can argue that situations where testing through dermal or inhalation
islikely to be more relevant to the particular assessment have not been identified. Furthermore, it
could be argued that interpretation of the results would be more difficult because of the added
difficulty of quantifying the exposure end of the assessment. Finally, more may be

gained from the modeling efforts described in Section 4.1.1.3 , where dose is calculated as a body
burden. At this point, the exact route of exposure of the study becomes of less important and

determinations of accumulated dose become more important.
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Much could also be learned from examining the results of mammalian studies. The Terrestria
Workgroup decided to focus mainly on the oral route since the studies currently available involve
oral routes of exposure. The Workgroup also believed that the findings regarding this form of
exposure should be applicable to other routes for the purpose of demonstrating the feasibility of

conducting probabilistic assessments.

4.1.3.2 Time Scale and Dose Calculations

The importance of time scale and the options available to consider time scale for assessment
purposes are discussed earlier in Chapter 2. Three time scales, which correspond to realistic
exposure scenarios, are proposed in that section. Thisis very relevant to the calculation of dose
from studies with the test species and the determinations of the matching exposure regime
expected with the focal species. The difficulty comes from the studies themselves since, except for
the acute oral study, the exposure is through the food and the amount of residue consumed by test
individuals cannot be reliably determined. (See section 4.2.) This means that only the LDs, study
provides information relevant to one of the proposed time scales and the associated exposure
calculations. The single “bolus’ exposure of the study is relevant to birds gorging on food, for
diurnal feeding peaks, baits, granules, seed treatments and scenarios of secondary poisoning. For
the other exposure scenarios, medium and long term, difficulties arise when trying to match
dosing regime from the appropriate studies to the exposure predictions. The latter are calculated
on the basis of mg of chemical per kg body weight per day. For medium and long term scenarios,
the best way to express exposure is to determine the cumulative dose consumed over a period of
timet. For medium term scenarios, it then remains to match the cumulative dose calculated for
t=5 days with the equivalent cumulative dose from the LCs, study. For long term scenarios, the
cumulative dose calculated for t=20 weeks is matched with the equivalent cumulative dose from
the reproduction study. Unfortunately these options are currently limited by the inability to
determine dose ingested over time for these two latter studies. Given this limitation three options

are proposed to deal with thisissue:
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Modify existing studies to accommodate individual-based determinations of daily food

consumption,

Use group mean estimates of food consumption from existing studies to obtain approximate

estimate of dose consumed over time and assume 100% assimilation and 0% depuration, and

Adopt a modeling approach, as described in the next section, with the accompanying required

research and studies.

4.1.3.3 Distribution and Elimination Rates

Health effects in wildlife exposed to pesticides occur when the chemicals interact with critical
molecular receptors. The amount of pesticide reaching those receptors is a function of the level

of intake, balanced by elimination processes. Exposures occurring from oral, dermal or inhalation
sources are the focus of most models. Elimination processes are generally based on established
elimination constants that are developed using radioactivity depuration rates from animals dosed
with radiolabeled pesticide. (The EPA requirement for metabolism studies of pesticides that
might occur in livestock feed, OPPTS 860.1300, results in the development of chicken excretion
datafor many pesticides, though these studies are rarely published in the open literature). Several
issues should be considered when using elimination rates and devel oping models that are reflective

of actual elimination processes.

Once inside the body, the fate of a pesticide, and its eventual absorption and elimination, varies as
afunction of the pesticide's chemical characteristics, the particular species physiology, and the
health status of the exposed individual. Modeling can effectively predict pesticide levelsto which
an organism is exposed. Modeling of absorption and elimination processes is more complex and
requires an understanding of the chemical's distribution, storage, metabolism, binding to critical
and non-critical sites, and elimination (Figure 4.1-3). The importance of, and necessity for,
determining these model inputs is dependent on the degree of accuracy that is desired to quantify
the availability of the absorbed body burden to critical molecular receptors.
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Figure 4.1-3 Absorption and elimination processes to consider for assessments using body
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The maximum possible dose accessible to these receptors is that represented by total chemical
dose entering the body through exposure pathways. Radiolabeled pesticide studies that document
fecal excretion of labeled parent and breakdown products provide excretion rates sufficient for
balancing exposure rates in screening level assessments. Should the chemical body burden reach
levels of concern using this screening approach, more detailed analyses of the chemica's statusin
the body may be required. The following factors reflect the more intricate series of events that

occurs following pesticide exposure.

Of the dose ingested, inhaled or placed on the skin, only a portion will be absorbed into the
systemic circulation. The unabsorbed chemical can be regurgitated, excreted in the feces, exhaled
or washed from the skin. Absorbed chemical is moved into the plasma via capillaries a the site of
contact. Once in the plasma, achemical is distributed to any of avariety of periphera sites where
it can be stored in tissue depots, metabolized, excreted or where it may react with non-target or
target binding sites. The amount of chemical that actually arrives at critical receptors where it
causes atoxicological response is generally much less than that applied at the site of exposure.
With cessation of exposure, the presence of available chemical at the target site will generally
decrease over time, whether the chemical actualy is eliminated, degraded or stored in atissue
depot. Thefield of physiologically-based pharmacokinetic (PBPK) modeling uses detailed
analyses of the absorption, distribution, metabolism and excretion processes in avariety of tissues
and "compartments” in the body to predict the levels of pesticides that will actually be present at
critical receptors (Medinsky and Klaassen 1996, Krishnan and Andersen 1994). Though the use
of a"chemical in/ chemical out" approach may be sufficient in a preliminary screening assessment
of pesticide effects, assessment levels above the screening approach may require PBPK toolsto

better assess the kinetics of pesticide exposure to toxicological targets.

The nature of the interactions that occur at the target site must also be considered in a dynamic
fashion, giving consideration to whether the interaction is reversible or irreversible. Reversible
inhibitors, such as organochlorines and pyrethrins, act by inhibiting or altering the action of

receptors (ion channels, signaling systems, enzyme systems) as a function of their concentration in
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the vicinity of the receptor. As pesticide excretion from the organism will decrease the effective
body burden of the compound, and therefore the concentration at the receptor,an elimination
constant in the model will adequately reflect the reduced toxicity that occurs with time. The

frequency and level of exposure will therefore determine the amount of toxicant at the target site.

Irreversible inhibitors, though they will aso diffuse away from target sites with decreased body
burden, have aresidual effect that |eads to additive effects with successive doses. The
regeneration time of the target must be considered, in addition to dose level and frequency, when
evaluating effects over time. Organophosphate inhibition of acetylcholinesterase (AChE) isa
good example of an irreversible interaction with atarget receptor. Carbamate inhibition of AChE,
though generally considered an irreversible inhibition at acutely toxic doses, can be considered
reversible if the interval between exposures is sufficient to alow AChE reactivation, which can

often occur in a matter of hours.

A final consideration in the assessment of the reversibility of target site interaction is the potential
for residual effects that might occur due to the target site-pesticide interaction. Though the
mechanism of action of pesticidesis generally assumed to be interaction with a particular
molecular target, data show that the recovery from that interaction may not account for all of the
potential effects that the interaction may induce. In particular, work with organophosphate
insecticides indicates that recovery of AChE inhibition precedes recovery from many of the

neuropsychological manifestations occurring from the exposure. (See Section 4.3.)

4.1.4 Mechanistic and Empirical Models

Current practice is to represent the results of an acute toxicity test using a median effective dose
(LC50 or LD50). Where the data permit, a complete dose-response curve is obtained by fitting a

curve. In practice usually aprobit curve isfitted, determined by two parameters (the lope and

the median effective dose). Other functions such as the logistic are proposed on occasion.
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The resulting curve can be termed an “empirical model” because the parameters are not measured
directly. The values are assigned using a statistical procedure that optimizes the agreement
between observed and predicted response fractions. A more “mechanistic” approach may involve
aPBPK model, with parameters that are measurable physiological or chemical variables such as

fluxes and partition coefficients.

For higher tier assessments, consideration may be given to the use of a PBPK model to estimate
the body burden or to estimate the concentration at a site of action. Then the probit model (or
logistic model, etc.) can be fitted using the “interna” dose generated by the PBPK model in place

of the “external” dose that would otherwise be used.

Possi ble advantages of such an approach could be an enhanced ability to extrapolate to field
exposure scenarios, enhanced extrapolation across species, or better prediction of individual
variability. However, such advantages may depend on availability of a database of physiological
measurements beyond that required to implement a PBPK model for asingle test species. For
example, a PBPK may result in improved extrapolation from atest species to afoca species, if we
have physiologica measurements for both species. Similarly, a database of measurements for a

crucia physiological parameter may help in predicting individua variation in sengitivity.

Other aspects of mechanistic modelling, which the Workgroup did not explore but recognizes as

of possible interest for ecotoxicology, are

The movement in pharmacology towards population pharmacokinetics, an attempt to quantify
the variation in pharmacokinetic parameters in the human population in order to address

variation in the effects of agiven drug , and

A less data-hungry approach than PBPK model, which would involve statistical fitting of a
simplified model, e.g., a 2-compartment model. This type of approach is common in

pharmacol ogy.
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While it is recognized that a reliable pharmacokinetic model would be a very useful tool in higher
tier assessments, the remainder of this section focuses primarily on use of results from standard
toxicity calculations such as the median effective dose and dope, which will be available evenin

first-tier assessments.

4.2 SUITABILITY OF CURRENT TOXICITY TESTS

Three standardized avian toxicity tests (i.e., acute LD, dietary LC_,, and reproduction tests)
outlined in Subdivision E of Pesticide Assessment Guidelines (US EPA 1982) provide the core
data for vertebrate species in an ecological risk assessment. A wild mammal toxicity test (Series
71-3) in Subdivision E is used only for specific assessments where additional mammal data are
required beyond the lab rat and mouse tests from the Health Effects Division in OPP. The utility
of these tests in a probabilistic assessment were evaluated for the (1) the suitably of the
experimental designs to provide datarequired in a probabilistic assessment, and (2) adequacy of
current toxicity tests as models for effects potentially experienced by wildlife.

The utility of the tests for use in PRA is dependent, in part, on how exposure is characterized. The
Workgroup has proposed models to characterize exposure as the dose received through various
routes of exposure (i.e., mg/kg or mg/kg/day) rather than as a measure of concentrations available
in the environment (e.g., ppm in food items). Asaresult, the suitability of the toxicity tests must
be evaluated for their potential to provide information on the toxicity of the chemical relative to

dose, either in mg/kg or mg/kg/day.

4.2.1 Acute Oral Toxicity Test

The avian acute oral test provides a measure of acute toxicity to 50% of the test population (i.e.,

LD,,) in units of dose (mg/g body weight). Thisis pertinent to situations where active ingredients

are ingested rapidly (i.e., smulating asingle oral ingestion, such as with granules and baits, or
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when gorging on certain food types). To calculate the dose-response curve, the test requires an
adequate number of dose levels producing death in a portion of the test animals. Although the
test is designed to define the dose-response relationship with emphasis on estimating the dose
lethal to 50% of the test population, the risk assessment objective may be to understand the level
of exposure, which will result in any mortality (i.e. the threshold dose). However, uncertainty
(such as expressed by the 95% confidence interval) is much greater for estimates of the LD5 or
LD10 compared to the LD, To reduce the uncertainty of estimates of a threshold dose, the acute

oral test would have to be designed to concentrate doses in the vicinity of the threshold, which

may require alarge increase in the number of animals.

Additional consideration should be given to non-lethal endpoints. Sublethal effects such as
behavioral modification or lack of fright response can affect nest attentiveness, which is relevant
to successful rearing of young and survival. Animproved acute ora toxicity test should
incorporate relevant sublethal observations, which are quantifiable and amenable to analysis.

Such endpoints could include paralysis or response to stimuli.

To address questions related to the range of sensitivities among species, the Workgroup
determined that the “ up-down" tests (also referred to as Approximate Lethal Dose or ALD) on
additional species maybe adequate to supplement data from one or more definitive acute oral
tests. This up down test procedure allows additional species to be tested with a minimum of
animals, because one or two animals are dosed at a time, focusing on the dose producing partial

mortality.

An important consideration in conducting the ALD test is the ability to determine a dope for the
dose-response relationship. The current ALD design does not determine a dose-response, and
therefore the slope cannot be established. It is not clear whether the current ALD test can be
modified to determine the full dose-response and the slope without reverting to the existing design
of the full LDy, test. The Terrestrial Workgroup recommends that this issue of changes to the
design of the ALD test be investigated.
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One approach to creating slope estimates for these smaller data sets is based on distributions of
natural variability and parameter uncertainty from existing data. This approach can be particularly
useful if the test compound belongsto a class of chemicals with existing data and the speciesis
one for which data exist for comparison. Testing of this method for concurrence with existing
data sets will be necessary, but the approach offers a means by which the small datatoxicity tests

might provide useful data for inclusion in toxicity distributions.

4.2.2 Acute Dietary Test

The avian dietary test (i.e., LC, ) provides an estimate of the dietary concentration (ppm) that is
toxic to birds during a 5-day exposure followed by at least a 3-day post-treatment period. The

mammalian toxicity test aso is a short-term dietary test, but the guidelines are less standardized.

There are several aspects of the avian dietary tests that limit their utility for probabilistic risk
assessment. First, the endpoint is reported as the concentration mixed with food that produces a
response rather than as the dose ingested (i.e., mg/kg/day). Although food consumption is
measured, calculation of the mg/kg/day is confounded by undocumented spillage of feed
(especidly by mallards). Also, the group housing of birds only alows for a measure of the
average consumption per day for agroup. This measure is also confounded if animals die within

the treatment group.

Second, the exposure period is fixed at five days, and thus the test is limited to providing a
measure of effect during this arbitrary exposure period, without allowing for the differencesin the
temporal pattern of effects that may result from different modes of action. The interpretation of
this test is also confounded because the response of birdsis not only afunction of the intrinsic
toxicity of the pesticide, but also the willingness of the birds to consume treated food. Therefore

the LC,, is ameasure of vulnerability to the pesticide rather than a measure of inherent toxicity.

Because, the LC,, valueis partialy an artifact of the study design, its adequacy as a model of
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dietary toxicity in the field has been questioned (Mineau and Baril 1994). As Hill (1995) stated,
"TheLC

-» Per se, has little value as a quantitative descriptor of toxicity because far too many

factors affect chemical fate and availability to be accommodated by any standard laboratory test".

Third, dietary concentrations are held constant throughout the study. Consequently, the effects
will be more representative for chemicals that degrade slowly or that are bioaccumulative, while

effects for chemicals that degrade rapidly may be greatly overestimated.

In the short-term, the current avian dietary test can be used to provide an estimate of the dose-
response relationship during a five-day exposure period. Thiswill require an estimate of dose in
mg/kg per bird per day from estimates of food consumption. Clearly several other modifications
in the study design will be required to improve its utility in predicting pesticide effects. The test
must be designed to account for the daily dose that produces an effect over time (e.g. a dose-time
response relationship). Thiswill provide not only information on a species tolerance to a pesticide
through a dietary route of exposure, but insights into the temporal development of effects. The
length of the study must be modified to accommodate the temporal pattern of potential exposure
to the pesticide rather than basing the effects endpoint on afixed exposure duration. New and
innovative analytical techniques (such as time to event or dose to event analyses) will be required

to expand the understanding of the dose-response relationship beyond the L Csy determination.

The tempora pattern of effects could also be evaluated, as proposed through OECD, by

calculating an incipient LC

o defined by the point in the study when the LC,, does not decrease

by more than 10% over two days, based on atest of at least 5 days but not more than 21 days.
Asdiscussed in Section 4.2.1, the dietary toxicity test should incorporate relevant sublethal
observations that are quantifiable and amenable to analysis. Such endpoints could include
paralysis or response to stimuli or challenges. Lastly, the experimental design should mandate
individual housing of test animals to allow for measures of individual food consumption to better
facilitate a calculation of the dose-response relationship. Thiswill require using older birds and

de-emphasizing mortality as the only endpoint, since the response of birds may vary greatly
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depending on the mode of action, and sublethal effects may more accurately define the hazard of
the test material. The proposed guideline for a dietary toxicity test being devel oped by OECD
addresses many of these issues and provides an appropriate basis for designing a test that is more
suited for a probabilistic risk assessment. The proposed revisions are intended to address the
deficiencies of the current test, primarily the failure of the current design to provide hazard

information that is relevant to free-ranging birds.

4.2.3 Avian Reproduction Test

The avian reproduction test provides an estimate of the dietary concentration (ppm) at which
statistically significant effects are detected on a suite of parental and reproductive parameters after
an exposure period of approximately 20 weeks-approximately 10 weeks prior to egg laying and
10 weeks during laying. There are several aspects of this test that limit its utility for probabilistic
risk assessment. The endpoints are reported as the concentration in food rather than as the dose
ingested (i.e., mg/kg/day). Like the LC, test food consumption is measured; but, the calculation
of the mg/kg/day is confounded by undocumented spillage of feed (especialy by mallards) and
significant increases in food consumption once the photoperiod is extended to induce egg laying.
The reproduction test is not designed to determine a dose-response relationship. The study
endpoints are the no-observable-effect concentration (NOEC) and lowest-observable-effect
concentration (LOEC), which are a function of the selection of the dietary concentrations to test
and the power of thetest. The effectiveness of identifying an effects threshold is highly variable
among tests. The NOEC could be well below the true effects threshold or represent a
concentration that produces an effect that is not detectable given the power of the test. Recently,
the concept of the NOEC has been criticized by ecotoxicologists for these reasons. Additionally,
the test usually does not provide information to predict the magnitude of effect at a specified
concentration or dose above the effects threshold. An exposure assessment can calculate the
probability of exposure exceeding the NOEC, but with current information the effects assessment
the probability of a specific magnitude of effect cannot be calculated. Also likethe LC,,, the

avian reproduction study uses constant dietary concentrations throughout the treatment period
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while the concentration of a pesticide in the field usualy is reduced over time. Consequently, the
observed effects will be more representative for chemicals that degrade slowly or that are applied
repeatedly, while effects of chemicals that degrade rapidly will be overestimated. The
reproduction study asit was initially designed was intended for bioaccumulative chemicals and
recommended that exposure begin well before the onset of egg production. As such, the results
provide little insight into the temporal development of effects, such as whether the onset of effects
occurs rapidly after exposure or is delayed after along period of accumulation. Mineau et al.
(1994) in areview of reproduction studies concluded that the study, asit is designed currently, be

recognized only as arough screening tool.

The proposed OECD guideline for avian reproduction addresses one of the points above. By
starting pesticide treatment with birds aready in egg production, the temporal onset of effects to
egg and juvenile production can be determined. It also is designed to have increased statistical
power over the current design. However, the OECD guideline also remains focused on
determination of the NOEC (expressed as a dietary concentration) rather than the dose-response

relationship and uses constant dietary concentrations.

The Terrestrial Workgroup discussed study design changes which would permit a determination
of a dose-response relationship by increasing the number of dietary concentrations in the range of
partia effects and using regression anaysis to define the dose-response relationships. These
changes are technically feasible but require additional discussion on the specific questionsto
address, endpoints of primary interest, and statistical procedures appropriate to analyze temporal
patterns of effects. However, the committee ultimately concluded that uncertainties inherent in
extrapolating from alaboratory reproduction study to reproductive effects of free-ranging birds
with vastly different life history strategies are too great at this point to justify a major redesign of
the current avian reproduction study to generate a dose-response relationship. For some higher
tier assessments it should be possible to specifically design a dose-response reproduction test that
is predictive of reproductive effects for a specific pesticide use scenario. For example, in

situations where guideline reproduction studies fail to consider specific characteristics of the
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pesticide, such as rapid degradation rate or alternative routes of exposure, an alternative avian
reproduction study could be designed to ssmulate the predicted exposure profile of a pesticide for
a specific species. The study could be designed to develop a dose-response relationship by using
starting concentrations that are representative of the distribution of exposure concentrations.
Modifications to the avian reproduction test for probabilistic assessments should be coordinated
with harmonization efforts through OECD.

4.2.4 Summary

The acute oral study as currently designed is suitable for use in probabilistic risk assessments, but
ismost relevant for acutely toxic chemicals that can be consumed rapidly, such granular products
or formulations applied to food types consumed rapidly (e.g., gorge feeding). The dietary test has
several aspects that limit its use in an effects assessment where exposure is expressed as a dose
rather than as a dietary concentration. Both the dietary L C50 and avian reproduction studies
could be modified to calculate dose ingested. However, additional design changes would be
required to improve their usefulnessin PRA. The proposed OECD guidelines address severa of
these design changes, but other issues remain to be addressed in the further development of

probabilistic risk assessments.

4.3 INDIRECT AND SUB-LETHAL EFFECTS

These items are discussed briefly here because research results have implicated these effectsin
documented impacts on individuals or populations. It is necessary to identify these issues which
currently lack adequate study, models and test data necessary to develop probabilistic assessment
methods.
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4.3.1 Indirect Effects

Indirect effects of pesticide applications occur when one group of individuals, not necessarily
exposed to a pesticide, is affected by changes resulting from direct toxicity to another, different
group exposed and affected individuals. For instance, if the individuals directly affected by the
pesticide are adults caring for eggs or young, their death, lack of attention or abandonment will
result in the death of the offspring, who may have never received any exposure to the toxic
compounds. Thistype of effect has been demonstrated under ssimulated and actual field
conditions with organophosphate insecticides (Meyers and Gile 1986, Brewer et al. 1988).
Alternatively when the individuals affected by the pesticide are another species that represents
food, cover, competition or a predation threat to the first species, others may suffer from the loss

of these individuals.

All pesticides are intended to kill certain organisms, and those target organisms have ecol ogical
connections to other non-target organisms (e.g., insects used as food by birds, weed plants used
as cover by mammals). The best documented example of indirect effects of pesticidesis the
decline of the grey partridge in Sussex, England. A series of studies over a 30-year period
documented the reduction in invertebrates along the border of crop fields due herbicides and
broad-spectrum insecticides and the subsequent effects on partridge chick survival due reduced
insect food availability. In arecent review of 40 species of farmland birds in the United Kingdom
(Campbell et al. 1997) the authors concluded that 50% of these were in decline. There was
evidence of short and long term declines in the abundance of many of the types of invertebrates
and plants on which these birds feed, and that these declines were, in part, attributable to the

effects of pesticides.

Indirect effects may be more important than direct toxicity in many pesticide use scenarios, but
they are considerably more complex to understand and to quantify experimentally. Thisis
because the ultimate extent of indirect effects is often larger in scope than can be clearly

determined by short-term localized field studies. They aso may result through a combination of
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actions, including cultivation, irrigation, and the suite of agricultural chemical practices, rather
than smply the application of asingle pesticide. As aresult, the pesticide registration process
historically has not adequately addressed indirect effects, and as currently constituted, may be
incapable of addressing them.

4.3.2 Sub-lethal Effects

In the development of an ecological risk assessment for a specific chemical, subletha effects on
non-target organisms pose an unpredictable scenario. Current FIFRA registration data provide
information on mortality and some reproductive effects, but very little data on adverse effects of

sublethal exposures.

Subletha effects can be grouped into several categories.

1) Direct effects related to the intended toxic mechanism of action,
2) Those which are side effects unrelated to the toxic mechanism, and

3) Unanticipated effects in progeny of exposed breeding adults.

Examples of the first category are mechanism specific, with, for example, neurotoxin effects such
as morbidity, depression, and appetite lossin adults exposed to organophosphates or
carbamates, or hematocrit loss and internal bleeding of birds exposed to anticoagulants. The list
of anticipated sublethal effectsis aslong asthe list of mechanisms of action. The consequences of
direct toxic sublethal effects may be temporary or permanent, and result in reduced fitness of
exposed individuals with likely consequences of decreased food consumption, reduced growth,
decreased resistance to disease, and/or increased susceptibility to predation. This group of
sublethal effects could be included in any risk assessment model, by incorporating aterm for the

anticipated loss of some individuals through decreased fitness.

Side-effects unrelated to the intended toxic action include such consequences as eggshell thinning
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by DDT or dicofol, an effect not related to the neurotoxic effects of these sodium channel
disrupters. Estrogenic effects of o,p’-DDT, methoxychlor, and lindane are a so actions not
related to the intended toxic mechanism. Such side effects are not predictable, and can only be
detected by empirical observation, but screening for al unanticipated consequencesin adultsis
unredlistic. FIFRA incorporated eggshell thickness screening only because of historical data
linking DDT to effects on wildlife, and this test was included because of the importance to non-
target birds. Similarly, some other endocrine disruptive effects will be evaluated under the Food
Quality Protection Act, but no universal screening for other side effectsis planned. The
incorporation of sublethal side-effects into risk assessment models is complicated, because a
specific element must be incorporated into the model for each identified side-effect. It is very
important to include such effects in the risk assessment model, however, because side effects
unrelated to the direct toxic mechanism lead to a second universe of risk to the exposed
population. The eggshell thinning effects, for example, were more important than the direct toxic

effects of DDT as ahazard to birds in the environment.

Behaviora effects of organophosphates, including suppression of incubation and nest defense, and
aterations in migratory orientation of juvenile birds are additional examples of unanticipated
direct sde-effects. Each of these must be included in the risk assessment separately, for a

compl ete risk assessment to be constructed.

The third major category includes pesticides and other chemicals which have adverse effects on
the progeny of exposed breeding birds. These effects are usually mediated by incorporation of
chemical into the egg, with consequential alteration of embryonic development. Testicular
feminization and/or suppression of copulatory behavior in male progeny by estrogenic
compounds, liver P450 induction by incorporation of PAH-like compounds into yolk, and
aterations in avoidance behavior through exposure of eggs to organophosphates are examples of
this class of effect. These effects can be either organizational effects, which will permanently alter
the differentiation of an organ, or they can be temporary, activational effects, with the

physiologica state of the embryo or hatchling returning to normal following metabolism or
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excretion of the compound. The universe of second generation side-effectsis not well
characterized, and poses a difficult problem for risk assessment. Current FIFRA registration tests
do not screen for side effectsin birds in arigorous manner, and completely ignore second
generation effects. The choice of test speciesin current testing is quite limited, with only
precocial birds being examined, because of the necessity to artificially incubate eggs and rear
young birds independently from the exposed adults within the current test framework. Many
known sublethal effects are missed by not evaluating the behavior of adult breeding birds, and
most sublethal effects of endocrine disrupters are missed by not evaluating the anatomy or
physiology of the progeny. Development of testing procedures with passerine birds using natural
incubation and parental care of chicks would greatly increase the breadth of detection of possible
Side-effects.

Thereis currently a move to better quantify some of the sublethal endpoints that threaten wildlife
species, particularly in the area of subtle and second-generation reproductive effects.
Modification of LCsy and reproductive test guidelines, as part of the harmonization process with
OECD, proceeds with inclusion of endpoints including quantification of food consumption,
observance of behavioral response and expansion into less traditional species (OECD Reference).
The Endocrine Disrupter Screening and Testing Advisory Committee (EDSTAC) was formed to
recommend specific tests for sublethal effects of endocrine disrupting and modulating chemicals.
The recommendations from their final report include screens for effects in hormone and hormone
receptor levels, tissue response to modulators and, at higher tiers of assessment, avian
reproduction testing modified to include substantial sublethal assessments in the parental, 1 and
f2 generations (US EPA 1998).

Though these testing procedures will test for specific and developmental side effects, it should be
noted that individual specific tests will not address the general problem of screening for other
unanticipated effects of atest compound. It will remain a challenge to develop a protocol that
would be universal in its ability to screen for awide variety of unanticipated side effects. In the

absence of such an all encompassing protocol, there is much to be gained by increasing the
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information gathered in conventional testing protocols and using the harmonized and
supplemented EDSTAC protocols to better assess sublethal effects of test compounds. Further,
with the development of new pesticide chemistries posing unknown risks, an understanding of the
mechanism of action of the new compounds in their toxicity to wildlife can provide additional

insights necessary to anticipate some of the more subtle sublethal effects that can occur.

Risk assessment models for birds should include e ements for assessing sublethal effects. Direct
toxic sublethal effects could be included by incorporating an additional term in the set of
equations assessing mortality effects. Side-effects not related to the direct toxic mechanism of
action will be more difficult to incorporate, but should be included when identified. The example
of eggshell thinning should be used as amodel for inclusion into the risk assessment, and other
side-effects, when identified, should be included in a similar manner. Since side effects may be of
greater hazard to birds in environmental conditions, it is highly important for any ecological risk

assessment that they be included.

The charge to the committee was to develop tools and processes that account "for direct and
indirect effects that pesticides may cause," but went on to focus attention on direct acute and
chronic effects on terrestrial avian vertebrates due to the limitations of time and resources for the
committee. Asaresult, the Workgroup focused attentions on improving the process for the
assessment of direct toxicity, with the acknowledgment that indirect and sublethal effects aso
need to addressed if the pesticide risk assessment processis to understand the full ramifications of
the use of pesticides. It isrecognized that the proposed models and approaches emanating from
the Terrestrial Workgroup do not and cannot address indirect and subletha effects, and that
additional work is required before the ecological effects of pesticide use can be redistically
assessed.

4.4 UNCERTAINTIES ASSOCIATED WITH INTRA-SPECIESVARIABILITY

The dose-response relationship based on alaboratory study represents the effects information for

asingle species, under the specific conditions of the study. For an acute toxicity study,
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evaluation of the results leads to an expression for the probability of response as a function of

dose, which isinherently a probabilistic result (relating to variation in response within a species).

Use of laboratory dose-response information in arisk assessment is subject to diverse
uncertainties including statistical error associated with estimates (as represented by standard
errors or confidence bounds), and an array of extrapolative uncertainties. A number of factors,
intrinsic to the species, the test population and conditions, and the toxicity measurement process,
can contribute variability around toxicity estimates. An understanding of the sources of this
variability makes possible selection and development of better data for probabilistic assessments
and facilitates the extrapolation processes necessary for under-represented species. This section
documents sources of this variability and methods to account for it in probabilistic risk

assessments.

441 TheProbit Mode and Other Dose-Response Models

A full discussion of aternativesto current use of the probit model is beyond the scope of
ECOFRAM. Because of the general familiarity of toxicologists with that mode, it is used here

for most of the illustrations of probabilistic calculations.

The concept of adistribution of tolerances. Even under carefully controlled laboratory

conditions, some animals will be killed at a given dose while other survive; variability under field
conditionsis likely to be substantially greater. It isconventiona to describe the probit model by
assuming a distribution of tolerances among individuals. The animal’s tolerance is the highest

dose of apesticide it can ingest without dying. For the probit model specificdly, it was assumed

that the tolerances have alognormal distribution.

For concreteness, assume a dietary study is available, so that the parameters are the LC50 and the
dope. Expressing the probit results in terms of atolerance distribution, the distribution of logs of

tolerances is normal with parameters:
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mean=log(L C50),
standard deviation=1/slope.

(Base-10 logs are conventional in probit calculations.) Output of SAS Proc Probit includes the
mean and standard deviation calculated in thisway. (SASisatrademark of SASInst. Inc.)

For the sake of probabilistic analysis, it is sometimes helpful to note that the dose response
function is equivaent to the cumulative distribution function (CDF) for the distribution of
tolerances. For any distribution, the CDF [conventionally denoted F(x)] gives the probability that
avalue drawn at random from the distribution will fall below x. 1f F(d) denotes the probability

that arandom tolerance will fall below dose d, then

P(mortality at dose d) = P( tolerance< d ) = F(d).

The Slope Parameter for the Probit Model and Other Models. It seems important that a large

database of ecotoxicity results is available based on the probit model. To use results based on the
probit model in some aternative model (such as the logistic) would not necessarily be
straightforward -- to use an alternative model may require fitting the preferred model to the raw
data.

This appliesin particular to the slope parameter. For the probit model, the slope expresses the
change in response (in probit units) per unit change in dose (expressed as logarithms). For some
other choices of a dose-response function (and for the logistic model in particular) it is possible to
define a slope parameter analogous to the probit slope. However, the slope would not be
interchangel able with the probit dope because different “probability units’” would be involved
(e.g., logitsinstead of probit units). In addition, the specific version of the logistic model
suggested in Appendix A3 does not involve logarithmic transformation of the dose, unlike with

standard application of the probit model.
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4.4.2 Sources Of Intra-Species Variability And Their Relative Magnitudes

4.4.2.1 An Evaluation Of Sources Of Variability For Laboratory Toxicity Measurements

Current acute toxicity testing protocols are designed so that the slope of the dose-response can be
estimated and reported along with a measure of the statistical confidence of the estimate. The
guestion thus arises, when reporting the uncertainty associated with the slope in probabilistic risk
assessments, on whether the error reported on the estimate of the slope accounts for all the
sources of uncertainty expected from laboratory-derived data. Also, the problem of the relevance
of adope determined on one speciesto all other speciesremains. The variability in the response

of the test population has many sources:

The source of the animals (genetic stock, wild-caught vs. captive-bred vs. domesticated),
The condition of the animals (nutritional status, incidence of disease),

Environmental conditionsin captivity,

Method of dosing and other aspects of the experimenta protocol, and

Inherent toxicodynamic and toxicokinetic characteristics of the compound.

Along with the differences among species in morphology and biochemical and physiologica
processes, the last variable is at the source of inter-species differences in the slope of the dose-
response curve. (See discussion on thisin Section 4.6.) More subtle variations in these
characteristics are a so the cause of variation between individuals within asingle species. To
decide whether the error reported with the slope within a study is sufficient to account for all the
uncertainty expected, four sources of variability were examined using avariety of data. The

results are presented in Table 4.4-1. The four sources of variability examined were:
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Table4.4-1 Various sources of variability associated with the slope of the dose-response curve.

Sour ces of variability

Sour ce of data

Number and natur e of
data noints

M easur e of
variahilitv

Recorded variability

Within test

Within laboratory

Among tests

Among species

LDs, historical database, multiple
laboratories, all replicates, multiple species

LCso data, dieldrin positive controls (Hill
and Camardese 1986), same species

L Cs, data, dicrotophos positive controls
(Hill and Camardese 1986), same species

LCs data, dieldrin positive controls (Hill
and Camardese 1986), same species

L Csp data, dicrotophos positive controls
(Hill and Camardese 1986), same species

LDs, historical database, multiple
laboratories, same species (includes some
replicates within the same laboratory)

LDs, historical database

39 estimates of slope
and the standard error

45 estimates of dope
and the standard error

28 estimates of slope
and the standard error

45 replicate tests

28 replicate tests

4 chemicals with at
least three replicates

5 chemicals chemicals
with at least three

species

Standard error as % of
slope

Standard error as % of
slope

Standard error as % of
slope

Standard deviation as
% of mean slope

Standard deviation as
% of mean slope

Standard deviation as
% of mean slope

Standard deviation as
% of mean slope

22-65%
(median=27%)

11-44%
(median=20%)

12-31%
(median=20%)

24%

26%

17-52%
(median= 36%)

26-122%
(median=53%)
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1. Within-test variability. Thisisthe error associated with the estimate of the slope; for every

slope reported with a standard error, the ratio of the two was determined. The range and median

of the ratios are reported. For the three sets of data, the medians are approximately 20%.

2. Within-laboratory variability. Replicate tests on the Japanese Quail, reported by Hill and

Camardese (1986) as positive controls in acute lethal dietary tests (LCso) were examined. While
the variability in the response is expected to be larger for the L Csy test than for the LDs, test, it
was the degree of replicability of the dope estimate that is examined here. It is assumed that this
should be the same for the two toxicity tests. Theratio of the standard deviation of all the ope
values over the mean of the same yields values of 24 and 26% for dieldrin and dicrotophos

respectively.

3. Among-test variability. The historical database of L Ds, values was examined for products

where replicate tests were conducted on the same species, including those from the same
laboratory and those from multiple laboratories. The ratio of standard deviation to the mean of
the reported slopes ranged from 17 to 52% with a median of 36%.

4. Among-species variability. The historical database of L Ds, values was examined for products

where the slope was determined for at least three species. Theratio of the standard deviation

over the mean of the estimates for 5 chemicals ranged from 26 to 122% with a median of 53%.

If the variability from differences among species is ignored, the variability within atest is not
outside the range of the values reported among laboratories and among tests. This would seem
to indicate that use of the reported error on the estimate from any given test would account for
most of the variability expected across tests. Thisis not, however, aformal statistical approach to
this question which merits greater attention then what is given here. At the very least, the
standard error should be used as the measure of uncertainty surrounding the estimate of the slope,

until further work is carried out.
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This analysis provides an idea of the relative magnitudes of different sources of variation and
uncertainty. For additional analysis application of variance-components models may be desirable.
Variance components models are a statistical tool adapted to quantifying the relative contributions
of variance from different sources. However, further analysisis significantly limited by the
available data, so it may not be possible to pursue the analysis of sources of variability
significantly beyond what is presented. The ideal database for this type of analysis would result
from systematically repeating a study, in the same and different laboratories for one chemical.

4422 Factors Influencing I ntra-Species Variability

The factors discussed above concerned characteristics of the dose-response of the test population
itself. Of equal importance are those factors which influence this response either in the laboratory
or inthe field and which can play a significant role in determining the shape of the effects profile
for the key species. The influence of these factors, some intrinsic to and some outside the
population, is what has been traditionally accounted for by a*“laboratory to field” correction
factor. In the following section the effects of the age of the birds on their sensitivity is discussed
asthisisacrucia element from the point of view of assessing population impacts. The last
section will briefly touch on other factors thought to influence the variability in the response of

birds to pesticides.

Life Stage Senditivity. Within the test species, life stage can play an important role in the level of

chemical sengitivity. Younger birds and mammals can be more sensitive to pesticides than their
adult counterparts. Other considerations, such as breeding or migration status, can also affect
toxicity. Documentation of these occurrences and understanding of their mechanisms are
important to alow for adjustments in toxicity distributions and accounting for most-sensitive life
stages. Similarly, extrapolation from tested to non-tested species must proceed carefully, giving
consideration to the life stage of the laboratory-generated data and that of the speciesto which it
is being extrapolated.
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Dueto their greater nutritional needs during development, young animals, overall, consume
greater amounts of food as a function of their body weight, per day. They are thus exposed to
higher relative doses of chemicals compared to their parents. In addition to thelr increased
exposure levels, both mammalian and avian species have demonstrated age-dependence in their
sengitivity to organochlorine and organophosphate pesticides. Whether toxicity increases or

decreases with age depends on the chemical class and species.

Studies with avian species have shown mixed sensitivities to pesticides at the youngest ages of
exposure. Many organochlorine and a few organophosphate compounds are less toxic at the
earliest exposure ages (1.5 days post hatch) in precocia mallards. Most organophosphate
pesticides, however, are more toxic to younger ducklings and become less toxic as the birds
mature (Hudson et al. 1972). Acute oral toxicity studies with atricia passerine species, focusing
on European starlings and red-winged blackbirds, consistently show increasing nestling sensitivity
to organophosphates with decreasing age (Grue and Shipley 1984, Meyers et al. 1992, Wolfe and
Kendall 1998). The European starling appears to be the most extreme case, with nearly a 100-
fold increase in sengitivity to diazinon in nestlings compared to adults (Wolfe and Kendall 1998).
In this case, increasing amounts of the enzyme, butyrylcholinesterase, protect the older starlings
and its selective removal can experimentally decrease adult L Dsy values down toward those of the
nestlings (Leopold 1996, Parker 1998). Little more is known about the occurrence or

mechanisms of nestling sengitivity to the many other pesticides in use today.

Data on the sengitivity or resistance to pesticides in older wildlife age groupsis lacking. The cost
of maintaining test animals into their latter years of life and the consideration that long-lived
animals have had adequate time to effectively reproduce prior to their exposure have likely
minimized the effort made to collect these data. As the concern for wildlife does not smply imply
that they are disposable once they have successfully bred, further study is needed to assess wildlife
a later stagesin their life.

There are currently insufficient data on age-dependent toxicity of pesticidesto allow their

incorporation into probabilistic risk assessments. What little data are available indicate that
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estimates of toxicity made for adult wildlife can underestimate the toxicity potential that exists for
their young by afactor up to 100-fold. A mechanism for development of these data and their
inclusion into the risk assessment processis needed. Until that time, assessments of pesticides
applied during the breeding season should consider the potential for nestling sensitivity at

exposure levels lower than for adults.

Additional Factors Influencing Intra-specific Variability. Intra-specific variability in toxicity test

responsiveness can occur due to a variety of factorsin addition to age. These include test animal
health, nutritional status, metabolic status and the occurrence of genetic polymorphisms.
Deviation from standard test protocols leading to changes in test conditions can also affect the
responsiveness of test animals and thus the comparability of generated data with those collected

under standard conditions.

The overal hedth of the test animals can affect their sensitivity to toxicants. Animalsin poor
health may have less capacity to withstand insecticide exposure. Nutritional status can also
influence toxicity, whether considering the long-term pre-dosing period, or the 24 hours prior to
initiation of exposure. The pre-exposure extremes of starvation and ad libitum feeding can
strongly affect the toxicity of an insecticide compared to animals maintained on a diet that keeps
them hedlthy yet lean. Dietary components, such as phyto-estrogens in feed, can affect animalsin
reproductive toxicity tests, atering background data or interacting with test chemicals (Donaldson
1994).

Other factors that increase intra-specific variability are those that create or account for differences
in the physiology of test animals. In particular, those factors that can cause changes in metabolic
rates can influence both the profile and quantities of pesticide metabolites as well as the duration
they are resident in the exposed animal. Factors that can affect metabolism include age, gender,
hormonal status, pregnancy, disease and diurnal and seasona cycles (Ronis and Cunny 1994).

Genetic polymorphisms within a species can lead to distinct sub-populations of test animals

having specific sengitivities or tolerances to test chemicals. These differences can have their basis
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in subtle differences in chemical disposition or receptor sensitivity. The development of pesticide
resistant insect populations provided early evidence of this effect, however wild rodent
populations that have evolved a resistance to endrin and a number of rodenticides have
demonstrated that vertebrates contain, in their genomes, similar capabilities (Walker 1994).
These polymorphic genes that impart resistance to one portion of a population also leave a
portion of the population with a selective sengitivity to the same chemical. Variability of
polymorphism prevaence and expression in test populations can increase variability in test
response. Limited studies show that some wildlife test species have low occurrence of cross
strain variability in test endpoints (Hill et al. 1984) but little work exists to allow extrapolation of

these findings to wildlife speciesin general.

Though the potential for increased variability exists due to the above factors, the control of test
animal health and husbandry, and test conditions can provide stability to the test system that
minimizes much of the potentia interference. When combined with controls on other potentially
interfering test factors, such as ambient temperature, light/dark periods, chemical formulation and
administration techniques, intra-species variability can be minimized to the greatest extent.

Y et these same factors are present in wild populations and are likely influence the outcome of
exposure to pesticides. Currently, little is sufficiently know about the influence of these factorsto
consider incorporating this uncertainty in probabilistic risk assessments. Nevertheless one should
be aware that under certain circumstances their influence may be substantial and highly relevant to

the assessment endpoint.

4.4.3 Use Of Dose-Response Information In Risk Assessment

In the context of probabilistic calculations, probit results of particular interest include: (1) The
point estimates of the probit parameters (slope, median and effective dose). These two
parameters define the complete dose-response. The dose response gives the probability that an
anima will bekilled at a given dose, and thus may be viewed as inherently a probabilistic resuilt.
(2) Confidence intervals represent the precision of the estimates of the probit parameters, taking

into account the spacing of doses, the number of test animals used per dose, and the variability in

4-36



10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

the response variable. This chapter discusses ways of using this information in risk assessment
(See Chapter 5.) Analogous results are available for alternative dose-response models, such as

the logistic model; the probit model is used for illustrations of probabilistic techniques.

4.4.3.1 Extrapolation of LDg's or Other Low-response Dose Level

Earlier approaches to protecting sensitive individuals involved choosing a fixed fraction of the
median lethal dose (e.g., LDso/10) for comparison with expected environmenta concentrations of
achemical. This method did not incorporate chemical specific information on the dope of the
toxicity dose-response curve, so that adverse effects at low exposures may be underestimated
when the dose-response curve is shallow. As an aternative, an estimate of another response level
(e.g., LDs, LCy0r LDgo;) can be calculated based on the calculated LDs, (or LCsp) value and the
slope of the probit-line (Finney 1971, Hill and Camardese 1986). Estimates of lower-end
response levels, based on the median lethal dose and its associated slope, provide greater
confidence (Baker et a. 1994). Therefore some probabilistic effect assessments have focused on

LDs or LD values as more conservative estimates in toxicity distributions.

Concern over the reliability of such extrapolations arises because of variability in slope estimates
between and within laboratories for any given chemical, and because of the relatively wide
confidence intervals for low-toxicity dose levels. Determinations of acute toxicity are generally
made with measurement techniques biased toward highest statistical precision in the midrange
value, the LDsp or LCs,. The statistical error of the estimates, quantified by the 95% confidence
interval, increases as one moves away from the median measure. Regulatory levels of concern set
at 5% or 10% response values, for example, have substantially lower confidence in their estimates
than do estimates set around the 50% range.

In choosing alevel of response, the need for using low levels of effect to protect wildlife should

be balanced with lower precision for the response measure. This variability stems from the

parameter error associated with the determination of the lope and LDs. This aspect of
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paramater uncertainty is examined in Section 4.4.3.3 and a method is proposed for incorporating

this uncertainty into probabilistic assessments.

4.4.3.2 Generating Random Mortality Decisions

A complete account of variability will address variability in exposure, and also address variability
in the responses of individuals to a given exposure level. This section is concerned with the
second source of variability (variability of response, given exposure). Algorithms are presented
for generating “random mortality decisions’ for individual animals. Let d denote the exposure for
asingle animal in a Monte Carlo risk assessment algorithm. Then the outcome of the random
mortality decision is either that the animal is scored as “killed” or “survives.” The probabilities for
these two events are P(d) and 1- P(d) respectively, where P(d) can be calculated using the dose-
response function. (See Chapter 5.)

Alternatively, in some situations where the number of individualsis large, the need for random
mortality decisions can be avoided and the value of P(d) used directly. Details of the Monte Carlo
simulation scheme may depend very much on the problem formulation, particularly with regard to

issues of spatial scale.

Note that this section treats the parameters of the dose-response model (e.g., slope, LC50) as if
they are known. (Random mortality decisions are based on a given slope and L C50, but those
parameters are not varied in the Monte Carlo algorithms.) In actuality, these parameters are

subject to arange of uncertainties.
Regarding the form of P(d), the probability of response at exposure d, the range of possibilitiesis
not reviewed here thoroughly. However, two possibilities have actually been suggested in parts

of this document. First, for the probit model without background mortality,

P(d) =F(dlope* [ logd - logLDso] )
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There F (x) denotes the CDF of the N(0,1) distribution. (In other words, F (x) isthe tail area of a
N(0,1) distribution corresponding to values below x.) The function F (x) is an integral that cannot
be solved analytically; however programs for numerical evaluation of the function are widely

available, including “ @functions” in some widely used spreadsheet programs.

Second, f or aform of logistic model suggested in Appendix A3,

P(d)=P./{1+exp[ (2.2/(LD1-LDs))* (LDsp-d)]}.

Here P; (E1) denotes the maximum response percentage: as dose increases the it is assumed that
the response percentage approaches Py, which may be less than 100%. Appendix A3 may be

consulted for additional details on use of this expression.

Access to random number generators is assumed for : (1) a uniform distribution on the range O to
1, and (2) a standard normal distribution (a normal distribution with mean 0 and variance 1). If a
software package has random number generators for two or more distributions, these two
distributions will ordinarily be included. Adopting conventional notation, these two distributions
are here denoted U(0,1) and N(0,1).

Algorithm 1. Having generated d, calculate P(d) using the preferred dose-response model (e.g.,
the probit or logit model), arandom probability decision can be generated as indicated in
Appendix A3:

Step 1. Select arandom number from the U(0,1) distribution; and

Step 2: If the value generated in Step 1 falls below P(d) then the animal is scored as a mortality;

otherwise as a survivor.

Algorithm 2. In some situations (particularly for the probit model), an aternative algorithm

emphasizes the notion of atolerance distribution:
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Step 1: A random tolerance is generated from an appropriate distribution. Based on the probit

model, the following formula may be used:

random tolerance = LDsg, * 10(?/9¢)

where z has the N(0,1) distribution. The derivation of this formulais outlined in Technical Note 1
in Appendix D1.

Step 2: The random tolerance generated in Step 1 is compared to the exposure d. The individual

is scored as amortality if its exposure exceeds its tolerance; otherwise it is scored as a survivor.

This approach may have heuristic appea because it relates directly to the idea of a distribution of
tolerances. Also, the need for numerical evaluation of F (x) is avoided in the case of the probit

model. The approach has been implemented in the PARET model (Appendix A2).

Technically, this approach can be applied with dose-response functions other than probit, by
drawing tolerances from adistribution other than the lognormal distribution. However, it appears
that this approach would be equivalent to Algorithm 1 in terms of the resulting distributions, but
numerically inferior. (See Technical Note 2 in Appendix D1)

4.4.3.3 Statistical Confidence in the Dose-response

The methods described to this point treat the dose response function asif the parameters (e.g.,
sope and median effective dose) are known. In actuality they are subject to arange of
uncertainties. This section is concerned with how statistical precision (as quantified by confidence
intervalsin probit analysis) can be addressed in probabilistic analyses. Because acute toxicity
studies are optimized for estimating a median effective dose, the uncertainties considered will be
particularly important in extrapolating effects at low exposure levels. This section proposes

specific algorithms, as well as discussing some conceptual issues.
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The early chapters of the text by Hahn and Meeker (1991) are helpful for placing the information

provided by confidence intervals in perspective.

Cases involving extremely wide bounds for the L Ds,. It has been observed that for some data, the

confidence bounds for the LDs, may equal zero or infinity. Such outcomes may be prevented by
the constraints encoded in the ToxAna program regarding the data that will be accepted.
However, the following hypothetical data displayed below meets the constraints but produces an
extreme bound for the L Dso, relative to the point estimate.

For the following hypothetical data, the chi-square test indicates a good fit of the probit model:

1 2 4 8 16
dose:
#on test: 10 (dl)
#killed: 3 5 7 7 7

Slope (CI) 0.88 (0.02-1.7)
LDs, 23(10"-7)

Problem cases are likely to involve little change in the response fraction over the range of doses
tested. Technically, the LDs isrelated to the ratio of the probit intercept to the probit slope, and
if the intercept and slope are both close to zero precise inferences regarding the ratio are difficult
(Cox and Hinkley, 1974, Example 7.13).

In this type of situation use of the point estimate of the LDs, would seem risky, but this does not
mean that the data are useless for any purpose (Cox and Hinkley 1974). The hypothetical data
just given suggests that mortality is substantial at least for the upper range of doses tested,
possibly useful information. The Workgroup suggests that the Monte Carlo approach described

in the section can make use of whatever information is available from a given study. The
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uncertainty associated with reliance on less-than-perfect data can sometimes be placed in proper

perspective by adopting a probabilistic approach.

Natural Variability, Uncertainty, and Parameter Uncertainty. An important distinction from the

risk assessment literature is the difference between uncertainty and natural variability (e.g.,
Burmaster and Wilson 1996, Brattin et al. 1996). A rule of thumb sometimes used to understand
this distinction is that uncertainties can be reduced by collection of more information; we seek to
characterize natural variability. According to this rule, confidence intervals can be viewed as
representing a component of uncertainty (Brattin et al. 1996). To some extent the widths of the
intervals can be reduced (indicating greater confidence) by using more animals. Using more
animalsis not necessarily expected to result in higher or lower values of the lope. Specifically,
confidence intervals can be described as quantifying aform of parameter uncertainty. Note that
the category of uncertainty is diverse — the Workgroup makes no claim that confidence intervals

will capture all or most of the uncertainties that apply in a given situation.

Hierarchical Monte Carlo. The parameters of the probit model can be viewed as parameters of a

probability distribution. (In the log,, scale, the mean tolerance is the log of the median effective
dose (LC50 etc.); the standard deviation equals the inverse of the lope.) However, these
parameters are themselves subject to uncertainty. For thistype of situation, the risk assessment
literature suggests hierarchical Monte Carlo ssmulation (e.g., Burmaster and Wilson 1996, Brattin
et a., 1996). Thistype of approach, sometimes described as using a “distribution of
distributions’, involves nested Monte Carlo simulations. 1n an outer loop, values of a parameter
are drawn from distributions chosen to represent parameter uncertainty. For each sample of

parameter values, an inner loop involves a Monte Carlo simulation to represent variability.

Can parameter distributions be based on confidence intervals? In Monte Carlo smulations, it is

common to select distributions based on confidence intervals, e.g., by fixing the 2.5th and 97.5th
percentiles of the distribution at the bounds of a 95% 2-sided confidence interval. Actually the
standard interpretation of a confidence interval (e.g., Sokal and Rohlf 1995) treats the interval as

random and the parameter as fixed (not having a distribution). The intervals are viewed as
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random because they are calculated from variable data. According to this formulation, the
confidence coefficient (e.g., 95%) is the probability that a randomly-generated interval will
enclose the true parameter value. Therefore some authors have objected to basing Monte Carlo
input distributions on confidence intervals (e.g., Warren-Hicks and Butcher 1996). Cox and
Hinkley (1974) advise against manipulating confidence coefficients as probabilities, in particular

to treat the joint uncertainty for multiple parameters.

A response sometimes given invokes Bayesian theory, which does assign distributions to
parameters (the prior distribution and the posterior distribution). In many situations there are
standard uninformative prior distributions for which the resulting Bayesian intervals (termed
credible intervals) are equivaent to familiar confidence intervals. Thereis no general principle
that such a Bayesian interpretation can be given to a confidence interval calculated by any
method. However, there are some grounds for a Bayesian interpretation of the standard intervals
from probit analysis (Box and Tiao 1973, Seber and Wild 1989, Gelman et al., 1995).

While thisis atype of Bayesian approach it is not equivalent to Bayesian analyss, Bayesian results
depend on the choice of prior distribution. In particular, one isrelying on avery flat prior, as
appropriate in situations where much prior information is not available or the results could be
strongly influenced by prior information. Some “Bayesians’ would argue that prior information is

usually available and should be incorporated into the prior distribution.

Alternatively these issues may be approached from a classical viewpoint, by undertaking Monte
Carlo “coverage’ experiments. Such experiments involve generating ssmulated data sets based on
fixed parameter values, and calculating the probability that an interval calculated from a smulated
data set will enclose (cover) the true parameter values. If the 95% probability intervals from the
proposed Monte Carlo method have approximately 95% coverage, then the approach should be

acceptable from a classical viewpoint.

From a practical standpoint, if the confidence intervals quantify some kind of uncertainty, an

approach is needed to capture that uncertainty in probabilistic assessments. When a particular
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approach is roughly appropriate from either a Bayesian or classical perspective, the distinction

may seem like splitting hairs.

Distributions for the probit parameters. Chapter 5 provides an illustration of a hierarchical Monte

Carlo simulation and includes a simulation which involved the following assumptions for the

distributions of the probit parameters:

The slope was assumed to be normal,
The median effective dose was assumed to be lognormal, and

The dope and median effective dose were assumed to be statistically independent.

For the dlope, the mean and variance were obtained by fixing percentiles equal to standard
confidence bounds as output by a probit program. Similarly, percentiles were equated to

confidence bounds to obtain alognormal distribution for the median effective dose.

This section describes a more refined joint distribution for the two probit parameters, for the
situation not involving control mortality. The distributions suggested are the asymptotic
distributions suggested in Finney (1971). For the slope, the result will be identical to the
distribution just described. However the margina distribution of the median effective dose will
differ. Also, the two parameters are not assumed to be independent. The approach has been

implemented in a spreadsheet program.

Outline of the asymptotic distributions from Finney (1971). Following Finney (Expression 4.30),

it is convenient to “reparameterize’ the probit model. Instead of the parameters being the slope
and the L D50, the parameters chosen are the slope (denoted b) and a quantity. Finney denotesf/ :

evidently analogous to a grand mean in the context of ordinary linear regression. The re-

parameterized probit line can be expressed as.

probit response= y+b (x - X ).
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Here x is the dose (ordinarily in the log base 10 scale) and x is aweighted average dose.

The purpose of expressing the probit model in thisformisthat b andY/ , unlike b and the L D50,
can be treated as having normal distributions and as statistically independent. Formulae for the
variances of b and Y/ are found in Finney (Ch. 4) and are not repeated here. (The variance

formulae make use of intermediate calculations in Finney’ s iterative fitting scheme. The formulae
are available in a spreadsheet.)

The independence and normality of b and Y/ are convenient in deriving the standard (“fiducia”)
confidence intervals; these features are convenient here for Monte Carlo smulation. In Monte
Carlo smulation values for Y/ and b can be generated from independent normal distributions, as
described in the scheme below. Having generated random values of y and b, the value of the

L D50 can be calculated using the formula:

log(LD50) = x +(5-y )/b.

The weighted average dose x is not treated as uncertain in standard probit analysis. Asin

regression, no distribution is assumed for an independent variable. Technically, x does have a

statistical error because it is calculated using weights that depend on the independent variable.

As an approximation, it is customary to ignore this error in weighted nonlinear regression

caculations.

Application in Monte Carlo Smulation. These results justify the following Monte Carlo scheme,

given herein outline, applicable in cases that do not involve control mortality:

Step 1.Cd culatex, Y/ , and the slope (b) from raw acute data using standard probit calculations.
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Step 2. Calculate the variance of y and the variance of b (standard probit calculations)

Step 3. Repeat Steps 3a-c alarge number of times, generating a distribution of parameter values:
Step 3a. Generate arandom value for y. The random value has a normal

distribution. The mean of the distribution is the value calculated in Step 1;
the variance is calculated in Step 2.

Step 3b. Generate arandom value for b. The random value has a normal

distribution. (The mean isfrom Step 1; the variance is from Step 2.)

Step 3c. Calculate the random L D50 from the random y and the random b.

The Marginal Distribution of the LD50. If these expressions are used, then the marginal

distribution of the slopeis anormal distribution; for the distribution of the LD50, no distribution

is assigned directly: distributions are assigned directly to b andf/ ; arandom values of the LD50

may be calculated from random values of bandy .

The resulting distribution of the LD50 will often be approximately lognormal; however, in the
historical development of the probit method, the possibility of assuming alognormal distribution
was considered and rejected as “ unsatisfactory as a general technique” (Finney 1971, Bliss 1945).
However, alognormal approximation will be accurate when the standard errors of parameter
estimates are small. (This seemsto follow from asymptotic normality of maximum likelihood
parameter estimates.)

Correlation of the Siope and LD50. When multiple parameters are estimated from the same data,

they cannot be assumed to be independent. SAS Proc Probit routinely prints the covariance of the
dlope with the log of the LD50. For probit analysis, the correlation may be positive or negative,
depending on whether the LC50 isin the upper range of doses tested or in the lower range. (See
Technical Note 3 in Appendix D1).
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Should the probit parameters be treated as independent in Monte Carlo simulations? Note that
the result above applies to the correlation of statistical errors for estimates of the two probit
parameters, when they are estimated using the results of asingle study. However, the
distributions used in a Monte Carlo simulation may represent variation among studies. The
statistical correlation just discussed may have mininal affect on the correlation of actua slope and

LC50 values across studies.

The Workgroup suggests that if the Monte Carlo input distributions represent primarily variation
among studies (particularly among species), the correlation of the parameters across studies
should be evaluated graphically, using scatterplots. If thereisno indication of correlation across

studies, the parameters can be treated as independent in Monte Carlo smulations.

45INTERSPECIFIC METHODS AND VARIABILITY
45.1 Introduction

One of the largest sources of uncertainty associated with field predictions of the impacts of
pesticides on terrestrial animals comes from the large variability in the sensitivity of speciesto
toxic chemicals. It iswell recognized that for plants and animals alike, both in terrestrial and
aguatic environments, the range of sensitivities can extend up to three orders of magnitude. This
isillustrated for birds in Figure 4.5-1. For 53 carbamate and organophosphate insecticides the

L Dsy’s among species of birds range from 5 to over one hundred (ratio of 95" to 5™ percentiles of
the lognormal distribution). For 70% of the products this range extends between 10 and 100.

Thus, not only can the range be wide but the variance changes dramatically among compounds.
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Figure 4.5-1. Range in species sensitivities for 53
insecticides tested with at least six species of birds
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For technical and financia reasons only afew species of birds can ever be tested for their
susceptibility to pesticides. Only rarely are test species the same as those likely to be exposed
under field conditions. Thisimplies that test results from one or afew standard test species need
to be extrapolated to all field species. Given the large amounts of variability anong speciesit is
expected that interspecific differences in sensitivity will yield large amounts of uncertainty in the
risk assessment process. This uncertainty can be accounted for in the process of developing

probabilistic risk assessment methods.

This section will argue for the use of historical test data to develop standardized factors for
extrapolating across species and to account for the expected variance among species. Taxonomic
relationships among species sensitivity data are examined and the implications for the
development of extrapolation methods are discussed. Two approaches are proposed, each fitting
into one or more of the risk assessment methods discussed in chapter 5. The first approach
consists of methods to extrapolate, from test species data, to afixed level of protection; in this
case, alevel which encompasses 95% of the predicted species sensitivity distribution. The second
approach generates a predicted distribution of species sensitivity again from one or more test

Species studies.
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The data generated from acute oral toxicity studies (i.e. the LD50 study) conducted on birds for
the past two decades form the basis to the development of the methods discussed here. The
reasons for this are that (1) the acute oral toxicity study better reflects the “inherent” toxicity of a
compound than any of the other existing acute tests, (2) alarge number of tests were conducted
on many species for numerous compounds, and (3) the methods used to conduct the LD50

studies conform to well established protocols which have changed little over time.

4.5.2 Analysis of Phylogenetic Relationships among Species Sensitivity Data

In order to investigate interspecies differences, it is critical to determine whether data from any
group of species can be considered independent estimates of the toxicity of a given product to

birds at large or whether phylogenetic aspects have to be taken into consideration.

Baril et al. (1994) conducted two separate statistical analyses to detect patterns in the sensitivity
relationships among species and to determine whether these patterns are due to phylogenetic
relationships. First, aprincipa component analysis (SAS, 1988) was conducted on a subset of a
database of avian LDsy values. This subset of 176 LDs, values for 8 species and 22 cholinesterase-
inhibiting chemicals was selected to avoid missing data. Principle component analysisis an
ordination technique that allows for the visual inspection of multivariate data. Any existing trends
in species sengtivities to chemicals should emerge by collapsing the data into a number of
principal components. A three-way analysis of variance was also conducted on the main database
with the exclusion of chemicals or species with only one observation and of phylogenetic groups
with only one species. This dataset consisted of 489 observations for 74 chemicals, 25 species and
6 phylogenetic categories. The latter were obtained by grouping the 25 species into five families
and one sub-family: Anatidae (4 species), Columbidae (3), Emberizidae (2), Phasianidae (9),
Icteridae (5) and Passeridae (2).

The results of the principal component analysis run with eight species and 22 chemicals are
illustrated in Figure 4.5-2. The analysis by species shows that the ranking of species sengitivities

tends to persist across chemicals. Red-winged Blackbirds are by far the most sensitive followed,
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Figure4.5-2. lllustration of the principal component analysisrun on 8 species and 22 chemicals.
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as a group, by the Common Grackle, the House Sparrow, the Mallard and the Rock Dove. A
second group of species, the Pheasant, Japanese Quail and the Starling, trails off as the least
sensitive. This pattern isillustrated on the first principal component in Figure 4.5-2. The loadings
of the chemicals on this component (30% of the variation explained) are consistently high
indicating that these three groupings are ranked consistently across insecticides. The second and
third principal components separate out the Pheasant and Starling respectively. These
observations are most likely due to deviations from the pattern noted above, where for some
compounds, these two species are either extremely senditive or insensitive. These "outliers' may
reflect real differencesin sengitivity or problems with the studies. From a phylogenetic point of
view the only obvious separation seemed to be between the two Icteridae and the two

Phasianidae.

The results of the three-way analysis of variance showed that each of the three variables, species
(F=4.2, P<0.0001), chemicals (F=21.3, P<0.0001) and phylogeny (F=7.9, P<0.0001), explained a
statistically significant proportion of the variability. A multiple comparison procedure (Ryan-
Einot-Gabriel-Welsch Multiple Range Test) again allowed for the statistical separation of only

two taxonomic groupings: the Icteridae and the Phasianidae.

A number of other authors have examined the phylogenetic patternsin the sensitivity of avian
species to pesticides (Joermann 1991, Schafer and Brunton 1979, Tucker and Haegele 1971).
These have demonstrated, as discussed above, that across many pesticides, patterns of sensitivity
exist between some families of birds. Y et, each species shows a wide range of senditivities among
the same pesticides. For instance, while some are generally less sensitive than others, they can
occasionally be ranked as the most sensitive. In conclusion, there are probably enough exceptions
to prevent the development of a predictive approach based on phylogenetic relationships.
Nevertheless, taxonomy has to be considered when making inter-species extrapolations. Based on
our analysis, at least two groupings of species, based on taxonomic relationships, can be separated

according to their sensitivity across cholinesterase-inhibiting chemicals.
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4.5.3 Derivation of Extrapolation Factorsto Predict a Pre-detemined Protection L evel

4.5.3.1 An Introduction to Distribution-based Approachesto | nterspecific Variability

The concept of using distributions to represent the possible universe of species sengitivities to
toxic chemicalsis not new. In essence, this approach assumesthat "...sengitivity of speciesisa
stochastic variable that can be characterized by fitting a probability density function to test
endpoints (e.g. LCxs) for several species...” (Suter 1993). This concept was used in deriving

water quality criteriafor the protection of aguatic life by the U.S. EPA (Stephan et a. 1985). The
Netherlands aso uses this approach to establish protection standards for both soil (Van Straalen
and Denneman 1989) and aquatic (Kooijman 1987) organisms. A number of probability
distribution functions were proposed such as the log-triangular, log-logistic and log-normal.
These differ in their shapes, in particular, at the tail-ends of the distributions. Thisis significant,
especialy for triangular distributions, which implies that a threshold dose or concentration exists
below which there are no sensitive species. Thisimpliesin theory that protection thresholds can
be defined which protect 100% of al species. The issue of threshold values for toxic chemicalsis
still the subject of debate. Work done with experimental toxicity data on aquatic invertebrates
does indicate that there is a good fit to the log-logistic model.

For obvious reasons the whole universe of wild species cannot be tested for their sensitivity to
pesticides and therefore the true parameters of the distribution cannot be determined. Thus,
estimates of distribution parameters based on small sample sizes have some uncertainty associated
with them. Dutch investigators have incorporated this uncertainty in the determination of
confidence limits for thresholds protective of afixed percentage of species (Van Straalen and
Denneman 1989, Aldenberg and Slob 1993). The implication is that, for any given chemical, as

the sample of species tested increases the protection threshold also increases.

A number of criticisms have been raised regarding distribution-based extrapolation models.
Forbes and Forbes (1993) provide a criticism of such models. The authors question the validity of
the assumptions inherent to these models, including that (1) "the distribution of species

senditivities in natural ecosystems closely approximates the postulated theoretical distribution”, (2)
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"the sensitivity of species used in laboratory tests provide an unbiased measure of the variance and
mean of the sengitivity distribution of speciesin natural communities®, (3) " by protecting species
composition, community function is also protected”, and that (4) "interactions among species in
communities/ecosystems can be ignored”. While these questions raise important issues, little can
be done at this time, with current knowledge, to address them. Some of the issues surrounding the
validity of current lab to field extrapolations can be examined in the context of intraspecific
variability as discussed in section 4.3. In spite of these criticism it should be noted that the
adoption of a distribution approach to dealing with species differences in sengitivity is an

improvement to the assessment of risks to wildlife and essential to probabilistic assessments.

As mentioned previously distribution-based approaches to species sensitivity are used to set
specific protection criteriafor various mediain different jurisdictions. These distributions, in
conjunction with distributions of exposure can aso be used to calculate proportions of species
affected under specific exposure models or scenarios. For products with acute oral tests (LDsg) on
four species or more the values can be fitted to alog-normal or log-logistic distribution directly.
The parameters of the distribution are thus determined for the product undergoing assessment
with some error associated with parameter determination that is a function of the sample size. The
mean and standard deviations are determined directly from the data and used as inputs into the
methods described in chapter 5 to characterize risk. With birds, the minimum number of species
required to apply this direct approach to tackle interspecific variability was established by L uttik
and Aldenberg (1995) at four. These authors explained that when n (the number of species) is
small, the likelihood of underestimating the variance is very high. Therefore, when predicting the
5th percentile (or any percentile) of the distribution with small n, the estimate will tend to be

closer to the mean than where the real value (for the population) lies.

Aldenberg and Slob (1993) derived a series of extrapolation constants, each of which is tailored
to a specific n, so as to compensate for this bias. When Luttik and Aldenberg tried to use these
same factors to obtain the 5th percentile with their data they found that when n<=4 the
extrapolation constant are so big that the predicted 5th percentile would be exceedingly low. This

is somewhat arbitrary and the optimum number, in terms of minimizing uncertainty while keeping
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the amount of testing within reasonable bounds is yet to be established and will require some
work. (See recommendationsin Chapter 7.) For the moment, the Terrestrial Workgroup does
support the use of this threshold of four species to establish the shape of the distribution.
Furthermore, the relationship between body weight and toxicity needs to be considered. (See

discussion following.)

Under current testing requirements for avian risk assessment, only one or two species are usually
tested. This precludes the use of the distribution approach discussed above for the assessment of
new products. The uncertainty associated with extrapolating from studies conducted on usually
no more than two species to the universe of possible wild speciesislarge. Two similar methods to
guantifying the uncertainty as a function of the number of test species were proposed
independently (Baril, Jobin, Mineau and Collins 1994, Baril and Mineau, 1996, L uttik and
Aldenberg 1995) and are summarized below. Both of these approaches are based on (1) a
retrospective analysis of historical data on the acute oral tests (LDsp) with numerous pesticides
and bird species, and (2) the assumption that the distribution of species sensitivities, or LDspS,
approximates alog-logistic distribution. The objective of both methods is to derive extrapolation
factors that, when applied to a small sample of LDss yields an estimate of the 5th percentile of
the predicted distribution of the species sensitivities for that product. They differ in some of the
assumptions and variables considered: Baril and co-authors take into account the scaling of
toxicity on body weight and the taxonomic trends in sensitivity discussed in the previous section.
While the extrapolation factors developed by Luttik and Aldenberg are the same regardless of the
test species, those of Baril and co-authors are specific to the test species or the combination of

test species available.

While these methods do not predict the full range of the distribution they may be useful for initial
screening purposes of new compounds or for comparative work among many products where
indices of effects are developed. Depending on the questions asked they may represent flags or
benchmarks of effectsin the risk characterization phase, especialy where methods 1 and 2 are
used. (See Chapter 5)
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4.5.3.2 Method developed by Luttik and Aldenberg (1995)

Using a database of historical data that includes insecticides of varying modes of action, the

authors propose an algebraic approach based on the following points:

The standard deviation of the logarithm of the LDsgs isindependent of the respective means
across pesticides. A "pooled” standard deviation is thus calculated from the historical data and
used when nothing is known about the variation in species sengitivity (i.e. when the number of

test species data are less than 4), and

No assumption is made about which species are to be used as test species from which
extrapolations are made. That is, it assumes that species senditivities are randomly distributed
without any trends or patterns associated with phylogeny. Thus it also assumes that no prior

knowledge about the nature of the test species is necessary.

The following steps were used in deriving extrapolation factors:
Step 1: The "pooled” standard deviation is calculated from all the LDs, data across all pesticidesin
the database.

Step 2: An algebraic solution is derived for the calculation of the extrapolation factor based on the
"pooled" standard deviation and the number of LDses available. The extrapolation factors,
when applied to the test species data predict the 5th percentile of the log-logistic
distribution (sensitivity across species) and the one-sided 95% left confidence limit of the
normal distribution.

The resulting calculations arrive at a constant extrapolation factor for the median estimate, the 5th
percentile of the distribution and a series of extrapolation factors, decreasing with the number of
LDs, values available, for the one-sided 95% confidence limit of the estimate of the 5th percentile
of the distribution (Table 4.5-1).
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Table4.5-1 Extrapolation factors developed by L uttik and Aldenberg (1995) which aim to
predict the 5™ per centile of the species sensitivity distribution from one or more test species
L Dsgs.

Number of test species Median estimate 95% one-sided left

confidence limit

1 5.7 32.9
2 5.7 19.6
3 5.7 15.6

4.5.3.3 Method Developed by Baril and Mineau (1996)

This approach recognizes the following points:

Phylogenetic patterns in species sengitivities do exist, although there are enough exceptions to
prevent the development of a predictive approach based on phylogeny alone. (See section
4.5.2.) Nevertheless, the derivation of extrapolation factors from historical databases needs to
recognize that standard test species are used for testing products. Therefore extrapolation

factors, specific to commonly tested species, are derived for use with LDsgs.

As demonstrated by Mineau, Collins and Baril (1996), the median lethal dose frequently scales
with weight, usually to a power greater than zero. The use of toxicity measurements expressed
in mg/kg body weight to extrapolate across species can lead to serious under-protection of
small-bodied birds. This effect isillustrated in Figure 4.5-3, where the cumulative frequency
distribution of the logarithm of the LDsos is plotted for the insecticide methiocarb. Once the
values are adjusted to scale for body weight (see explanation below) and projected to a body
weight of concern, such as that of the focal species, the curve is shifted up or down depending
on the body weight. Thus small-bodied birds are predicted to have an increased sensitivity
when compared to the original distribution whereas the opposite is true for the larger birds.
The parameters of the distributions illustrated in Figure 4.5-3 are shown in Table 4.5-2. Taking
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the body weight scaling into account shifts the mean of the distributions.

Figure 4.5-3 Effect of scaling for body weight
on the distribution of species LDsps for the
insecticide methiocarb

original bird
LD50s (n=36)

1.2

= = = 20g bird

= = 200g bird

= =1000g bird

Cumulative
frequency
distribution

Log(LDso)

Table 4.5-2. Effect of scaling for body weight on parameters of the distribution of species
L Dsgs.

Original data Extrapolation to
20g bird 2009 bird 1000g bird
Mean 8.7 4.3 13 27
5™ percentile 1.6 1.1 33 7.0
95" per centile 48 16 48 101
Ratio of 5" to 95" perct. 30 14 14 14

but, also, removes a substantial anount of variance in the data. The ratio of the 95" to the 5"
percentiles of the distribution decreases from 30 to 14. While it was argued that this
relationship smply reflects the greater sensitivity of small passerines (Fischer and Hancock,
1997), it does account for a significant portion of the variance in the data. Whatever the
correct explanation for the pattern, by taking this factor (body weight) into account, some of

the inherent uncertainty can be reduced.

The following steps were used in deriving extrapolation factors based on a historical data base on

cholinesterase inhibiting insecticides tested on at least six species (Figure 4.5-4):
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Step 1: LDses were corrected with the appropriate scaling factor b for each insecticide
(LDsoy'=L Dso/WP)

Step 2: The median estimate of the 5th percentile of the log-logistic distribution of the corrected
LDso'sis calculated for each insecticide (as per Aldenberg and Slob, 1993).

Step 3: Theratio of the LDs, of a designated surrogate test species (Mallard, Bobwhite Quail,
Japanese Quail, House Sparrow or Rock Dove, or the geometric mean of a combination

thereof) to the 5th percentile, calculated in step 2, is determined for each compound.

Step 4: A weight dependent extrapolation factor is thus derived for each testing scenario (i.e.
specific combination of test species LDsy values) by calculating the geometric mean of the
ratio across all insecticides, for each of the scenarios (Table 4.5-3). For single test values
the extrapolation factor is ssimply applied to it. With more than one test species L Ds, the
appropriate extrapolation factor is applied to the geometric mean of the data.

Since the extrapolation factors are averages, they will overestimate the real 5" percentile in about
50 % of the cases and underestimate it the rest of the time. This uncertainty can be determined by
calculating the standard deviation of the ratios that went into the derivation of the factor in the
first place. Table 4.5-3 illustrates that as the number of test species increases the standard
deviation of the ratios decreases substantially. Thus there is a benefit in increasing the number of
species tested in that the uncertainty surrounding our predictions of the 5™ percentile decrease
substantialy.
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Figure 4.5-4. Derivation of extrapolation factorsto account for differencesin species

sensitivities.

For each product:
From the historical database correct the LDs,
values to account for scaling with body weight
such that:

LDsg’ = LDso/W°

where b is the slope of the regression of Log(L Dsp)
against log(body weight).

Fit the logarithm of the LDsy’ to alogistic
distribution, calculating the mean and standard
deviation; calculate the 5" percentile’ of the
distribution using the extrapolation constants of
Aldenberg and Slob (1993) to adjust for the
sample size. The correction for body weight
carried out earlier implies that the predicted 5™
percentile becomes itself afunction of body
weight. In fact, the whole distribution will take a
dightly different shape depending on the weight of
the focal speciesto which we wish to extrapolate
(i.e. 20g bird vs. 200 g bird). Therefore the 5™
percentile is re-adjusted for the body weight of
interest:

5" perct.=5" perct."* WP

where W is the weight of the focal species.

Calculate theratio a of the 5 percentile of the
distribution to the LDs, of the Bobwhite Quail.

Calculate the ratio b of the mean of the
distribution to the LDs, of the Bobwhite Quail.

Final extrapolation factors:

Extrapolation factors are smply the average of all
the ratios previously calculated for each product;
thus the factor which allows to extrapolate from
the Bobwhite Quail LDs, to the 5™ percentile, EFs,
issimply the average of all a; similarly the factor
which allows to extrapolate from the Bobwhite
Quail LDs to the mean, EFsg, is simply the
average of al b.

aa ib
EFs = "y EFso - =

4-59

Product 1

v | v
5th perct. v Mean
Bobwhite

Product 2

v v
5th perct. Mean
Bobwhite
Product 3
Product 4

5th perct. Mean <
Bobwhite



ga b~ WDN PP

(o)]

8

Table 4.5-3. Extrapolation factors developed by Baril and Mineau (1996) which aim to
predict the 5™ per centile of the species sensitivity distribution from one or more test species
L Dses. The effect of scaling for body weight was taken into account when calculating these
extrapolation factors and those given here are predictionsfor 200g birds.

Species Extrapolation N Mean Standard deviation of

factor?® ratio  ratios(on which factors
are based)”

One species:

Bobwhite Quail 4.6 29 0.66 0.51

Japanese Quail 55 43 0.74 0.36

Mallard 4.9 46 0.69 0.46

Two species:

Bobwhite Quail and Japanese Quail 4.2 25 0.62 0.33

Bobwhite Quail and Mallard 4.9 26 0.69 0.36

Japanese Quail and Mallard 4.9 40 0.69 0.33

Thr ee species:

Bobwhite Quail, Japanese Quail and 4.4 21 0.64 0.28

House Sparrow

Bobwhite Quail, Mallard and House 4.1 21 0.61 0.30

Sparrow

Japanese Quail, Mallard and House 43 33 0.63 0.26

Sparrow

Four species:

Japanese Quail, Mallard, House Sparrow 3.9 33 0.59 0.20

and Rock Dove

a to be applied to the un-transformed test species L DsgS; where more than one test species LDs is available the
factor is applied to the geometric mean of the values.
b: Ratios and standard deviation were calculated from the logarithms of the LDsos
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This second method for deriving factors which alows for the extrapolation of test species data to
fixed levels of protection is dependent on extrapolation “constants’ which are used in the
calculation of the 5" percentile of a distribution (Aldenberg and Slob 1993). These constants were
developed to compensate for the tendency of small sample sizes to under-estimate the variance
and thus over-estimate the 5™ percentile of distributions. In order to incorporate the body weight
scaling variable another series of constants will need to be established so as to account for the
error associated with the estimate of slope of the toxicity-body weight relationship. (See Chapter
7.)

4.5.4 Derivation of Extrapolation Factorsto Predict Distribution Parameters

The preceding section discussed methods to develop extrapolation factors which, when applied to
the geometric mean of the LDsqs for one or more test species, will predict the dose which
corresponds to the 5" percentile of the species sensitivity distribution. Using the same method
based on historical data, the average distance between the logarithm of test species LDsgs and the
mean of the distribution can be calculated (Figure 4.5-4). This average distance becomes an

extrapolation factor which is applied to test species LDsos to predict a mean for the distribution.

Table 4.5-4 illustrates some extrapol ation factors cal culated from a database of LDs, values for 56
cholinesterase-inhibiting insecticides. These calculations did not involve an adjustment for body
weight scaling which would be required when establishing “definitive” extrapolation factors. The
factors shown in Table 4.5-4 illustrate the taxonomic patterns associated with species sensitivity
data discussed previoudly. On average the Mallard, Japanese Quail and Bobwhite Quail tend to be
somewhat |ess sensitive with respect to the mean; whereas the Red-winged Blackbird and the
Starling lie at opposite tails of the distribution. From the point of view of reducing uncertainty, it
is not the exact value of the factor, but the error associated with its use that is of interest. This can
be estimated by looking at the standard deviation (S.D.) of the ratios from which the factors are
derived. For instance, Table 4.5-4 shows alower S.D. for the Japanese Quail than for the Mallard,
indicating that the Quail is more predictable in its sensitivity than the duck and would thus lead to

fewer errorsin predicting the mean. More relevant, however, isthe
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Table 4.5-4. Some extrapolation factorsfor use with specific test species valuesto predict

the mean of the distribution.?

coO~NO Ol W

Species Extrapolation N Mean Standard deviation of
factor® ratio ratios (on which factors
ar e based)®

One species:

Bobwhite Quail 0.96 30 -0.018 0.38

Mallard 0.90 49 -0.046 0.40
Japanese Quail 0.76 44 -0.119 0.30

Rock Dove 1.09 43 0.037 0.26
Red-winged Blackbird 2.27 45 0.356 0.35

House Sparrow 1.30 41 0.114 0.30

Starling 0.61 40 -0.215 0.53
Ring-necked Pheasant 0.84 47 -0.076 0.38

Two species:

Mallard and Bobwhite Quail 0.92 29 -0.036 0.23
Japanese Quail and Rock Dove 0.89 38 -0.051 0.18
Bobwhite Quail and Red-winged Blackbird 1.38 25 0.140 0.19

Thr ee species:

Bobwhite Quail, Mallard and House Sparrow 1.01 21 0.004 0.16
Japanese Quail, Rock Dove, House Sparrow 1.03 34 0.013 0.16

a The effect of scaling for body weight was not taken into account when
calculating these extrapolation factors.

b: to be applied to the un-transformed test species L DsqS; where more than one
test species LDs is available the factor is applied to the geometric mean of the
values.

c: Ratios and standard deviation were calculated from the logarithms of the LDsS
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finding that as the number of test species increases, the S.D. decreases significantly. The greater
the number of species tested, the greater the confidence in the predictions of the mean of the
distribution.

Whereas ways are found to use historical datato predict the mean of the distribution the same
method cannot be used to determine the variance associated with the distribution. Luttik and
Aldenberg (1995) have argued that since the standard deviation cannot be estimated from sample
sizes of less than four a*“generic” or pooled standard deviation s, is calculated using the datasets

of log(LDsp)sfor all pesticides using the following equation:

[o]

a (xi - 7)2 +é (yi - 37)2+...+é (Wi - v_v)2

p
n,+n,+...+n_-m

wherex, y, ..., w are the respective datasets for m pesticides. The single condition the authors set
to the use of this generic standard deviation was that the standard deviations for the historical data
be independent of the mean of the logarithm of the LDsps. The value calculated by Luttik and
Aldenberg was 1.071 for the In(L Dsp) from a database of 55 pesticides encompassing many
different modes of action. If the same calculations are conducted on a database of avian toxicity
values for 56 cholinesterase-inhibiting insecticides, the generic standard deviation for the

0g10(L Dsp)s is 0.428. These two numbers, when back-transformed to the antilog, are essentially
identical. This suggests that the variance to be found among compounds in the width of the

distributions may not be introduced by differences among compounds in their mode of action.

4.5.5 Points of Caution about These M ethods

The following important points about the distribution-based methods described above need to be
made:

Thereis some biasin the historical database used to derive the extrapolation factors.

Cholinesterase-inhibiting insecticides, compared to other modes of action, are the dominant
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group within the database. These products were tested on many species because of their
toxicity to birds. This bias would have to be evaluated by calculating factors based on
organophosphate and carbamate insecticides alone and comparing these to smilar factors
determined for al other products combined (see recommendations in chapter 7). If the
variance associated with the factors is similar for both groups of products than factors based
on the pooled data could be used.

Another bias stems from the use of LDs, values determined with the Approximate Lethal
Dose method. This method which provides an “approximate”’ estimate of the median letha
dose lacks precision and any confidence bounds. A large part of the data consists of
determination made with this method. Further work needs to be carried out to determine the

influence of these data on the methods proposed here (see recommendations in Chapter 7).

It isimportant to stress the point that distributions do not replace knowledge about the
patterns of toxicity observed across species. In fact trendsin toxicity as afunction of body
weight, as described previously, have exceptions to them. While in the majority of cases the
larger birds tend to be less sensitive, the raptors are an exception to this. For cholinesterase-
inhibiting insecticides, in 8 out of 10 chemical-species comparisons, the bird of prey was more
senditive, sometimes by a wide margin, than predicted from the distribution and weight of the
bird (Mineau et a. 1999). Furthermore, some chemicals exhibit very different patternsin
toxicity to various taxa than what is usually found. For instance insecticide fipronil is more

toxic to most of the Phasianidae than would be predicted from the historical distributions.

Should we make assumptions about which species are going to be tested in the future? If this
is still open to debate then the method proposed by Luttik and Aldenberg would appear to be
the best at the present timeif it is modified to deal with body weight scaling. If, however, the
Mallard, Bobwhite Quail and the Japanese Quail remain as the preferred test species, perhaps

amethod to derive extrapolation factors should be closer to the one proposed by Baril et al.
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4.5.6 Example of the Use of Extrapolation Factorsto Predict the 5" Percentile of the Species
Sengitivity Distribution

Asasummary of the previous sections, Figure 4.5-5 illustrates the methods proposed to predict
the 5™ percentile of the species sensitivity distribution from small datasets. Progression from one
method to another is dependent on the number of species (N) for which an LDsp valueis
determined. When N is less than four, three methods are proposed which rely on the use of
extrapolation factors (EF). These factors, as explained above, were established from historical
data. The EF appropriate to the species tested are used to determine the median estimate of the 5"
percentile (output no. 3). When used in combination with the standard deviation (Sgr) associated
with the estimate of the EF the 5" percentile can be predicted with a specific level of confidence
that it is not overestimated (output no. 2). Alternately a distribution of predicted values of the 5"
percentile can be generated using a distribution of factors with EF as the mean and Sgr the
standard deviation (output no. 3). When N is equal to four or more species the parameters of the
distribution are determined directly without the use of extrapolation factors. The technique used is
that of Aldenberg and Slob (1993). Two outputs are thus obtained: the median estimate of the 5"
percentile (output no. 4) and the one-sided 95% left confidence limit of the 5™ percentile (output
no.5).

An example of these methods is presented in Table 4.5-5 for a hypothetical insecticide. The input
data required to apply the methods and the output from each are presented. The “rea” value of
the 5™ percentile was established at 6.5 mg/kg based on data for 18 species. The predicted values
are compared to this“real” value. It is apparent that for this compound methods 2, 4, 5 provided
ample protection in that they underestimated the value of the 5" percentile. Method 5, however,
tends to provide an exceedingly high safety margin. Methods 1 and 4 predicted values closest to
the real value, usualy within afactor of two. Thisis not ajustification for the use of one method
over the others but only to demonstration their use. Such an examination is warranted, however,
to establish the preferred option. This could be carried out using the historical database itself, not

asavalidation, but as a verification of the precision of the predictions.
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Figure 4.5-5. Illustration of the methods used to predict the 5" per centile of the distribution
of species sensitivities from small datasets. The different methods lead to separ ate outcomes
which areare numbered 1to 5.
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Figure 4.5-5. Cont’d.
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Figure 4.5-5. Cont’d. *
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Table 4.5-5. Example of the use of methods to predict the 5" per centile of the species sensitivity distribution from small
datasets. The outputs from the five methods are labelled 1 to 5. Acronymsfor the species names. Bob=Bobwhite Quail,
Mall=Mallard duck, Hsp=House Sparrow, Japa=Japanese Quail, Rock=Rock Dove, Rbg=Red-billed Quelea.

INPUT DATA
mean log(LD50) Stdev (logLD50) N EF stdev (EF)
Bob 151 1 0.65 0.51
Mall, Bob 1.83 0.47 2 0.69 0.36
Mall, Bob, Hsp 161 0.51 3 0.6 0.30
Kn(50%) Kn(95%)
Mall, Bob, Hsp, Japa 151 0.47 4 192 5.49
Mall, Bob, Hsp, Japa, Rock 1.45 0.42 5 1.85 4.47
Mall, Bob, Hsp, Japa, Rock, Rbq 141 0.39 6 181 3.93
OUTPUT Predicted 5th percentile
Fixed Distribution parameters
mean N median estimate with frequency of 5th 95th Range
LDsg estimate 95% confidence overestimate®  perc. perc.
Bob 32 1 @ 7.2 @ 1.0 @ 53% 1.0 49.0 47
Mall, Bob 68 2 139 39 82% 35 53.7 15
Mall, Bob, Hsp 41 3 102 29 74% 3.2 31.6 12
Mall, Bob, Hsp, Japa 32 4 @ 4.1 @ 0.1
Mall, Bob, Hsp, Japa, Rock 28 5 4.6 04
Mall, Bob, Hsp, Japa, Rock, Rbq 26 6 5.0 0.7
5" per centile deter mined
with 18 species
all species 29 18 6.5

a establishes the frequency with which the values in the distribution overestimate the real value of the 5™ percentile.
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4.5.7 Slope of the Dose-response Curve

The dope of the dose-response curve is thought to differ among species due to the differences in
morphology, and biochemica and physiological processes which interact with the inherent
pharmacokinetic characteristics of the compound. The variability in the variance of the slope
originating from differences among species needs to be distinguished from that originating from
other sources. In essence, the question becomes the following: if we cannot make predictions
about the slope based on taxonomic relationships, which at this point in timeis not possible due to
the lack of appropriate data, is the variability introduced by species differences any greater than
the existing variability originating from other sources? In section 4.4, Table 4.4-1, the sources of
variability in the estimate of the slope were examined. This brief analysis showed that variance, as
determined by the standard error of the estimate or the standard deviation of the mean of the
replicates, originating from within-test and from replicate test variability rarely exceeded 30%.
Conducting testsin different laboratories did not result in variability (S.D./mean) exceeding 50%.
When test results including different species were added to the analysis the variability ranged
between 26 and 122% with a median of 53%. The analysis of the sources of variability cannot be
pursued beyond what is presented here. Much of the toxicity datais obtained using the up-and-
down method which does not provide an estimate of slope. Thus few species, other than the
standard test species used for regulatory purposes, are tested in such away that slopes can be
determined. This prevents a more thorough examination of the species differencesin sopes.
Nevertheless, the level of variability noted in Table 4.4-1 tend to suggest that inter-species

differences do not contribute much more than what is already present.

The following options can be considered for use when extrapolating from test species datato the

focal speciesin aprobabilistic risk assessment.

Option 1: When there is only one dose-response:

A. Use the dope as the mean of a distribution of slopes and a coefficient of variation of 53%

(median in Table 4.4-1 for the “globa” variance); thisis for use in Monte Carlo simulations.
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B. Useasin“A” to determine the 5 percentile of this distribution to set alower “conservative”’
bound; a small dope vaue is considered conservative since it predicts mortality at lower doses

than a higher value for the dope.

C. Dothesameasin“A” or “B”, but using the standard error of the estimate from the study

itsalf, as a measure of variance.

Option 2: When there is more than one dose-response (n >1):

A. DoasinOption 2, “A” or “B” above, but substitute the mean of n slopes for the mean of the
distribution.

B. Use auniform distribution with the minimum and maximum values defining the range.

4.5.8 Choice of Test Species

Asnoted earlier it is quite clear that much uncertainty regarding the sensitivity of speciesto
chemicals can be reduced significantly by testing for toxicity with more species than is currently
done. It has been argued that testing additional species with the up-and-down method would be
sufficient to obtain this additional information (OECD, 1996). What needs further clarification,
however, is the types of species chosen for further testing. It is assumed for the purpose of this
discussion that the existing test species most often used, the Bobwhite Quail, Mallard and the

Japanese Quail, will continue to be used for determining the acute toxicity of pesticides.

In section 4.5.2 the taxonomic patterns in species sensitivities were discussed. It was
acknowledged that the information collected so far indicates that broad patterns exist. The
Phasianidae are less sengitive than the ducks, and passerines, in general, especially the Icteridae,
are more sensitive. This evidence suggests that any further testing of species should move away
from testing more Phasianidae. Edwards and Schafer (1998) discuss some of the criteria set out to

select species for testing. They considered the following factors as important:
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Phylogeny: Passerines make up more than 50% of all species; other major classes of agricultural

birds include Anseriformes, Galliformes, Columbiformes, Psittaciformes and Falconiformes.

Tolerance to laboratory conditions: There should be a preference for captive breeders over wild

caught birds which must be acclimatized to laboratory conditions quickly; low stress and

uncomplicated laboratory requirements are highlighted.

Availability: Captive bred birds available commercially (other than the standard test species)
include Parrots and fringillids. Falconiformes such as the American Kestrel are difficult to breed in
captivity. Wild caught birds include abundant species such as the feral Pigeon and various

Passeridae, I cteridae, Corvidae, Fringillidae or Emberizidae.

Regurgitation: Regurgitation may be unavoidable athough smaller dose volumes and capsules
may reduce it.

Sengitivity: A rough ranking of average sensitivity across speciesis available (see section 4.5.2),

however, it is not applicable across all compounds.

Effect of Size on senditivity: Whatever the reason for the size effect seen by Mineau et a. (1996)

“...it would seem prudent to include at least two passerine speciesin any shortlist of species...”

for testing “...because of their significance in agriculture and sensitivity due to their size or

phylogeny.”

Edwards and Schafer conclude with the following short list of species: Quail (Bobwhite or
Japanese), Mallard, Zebra finch, Icteridae or Turdidag, feral Pigeon, and the Bugerigar.

4.5.9 Extrapolation Across Speciesfor Other Tests

The methods developed for inter-species extrapolation with the avian acute oral LDs, test owe

their strength to the availability of extensive collections of LDs, data from numerous species for
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each of a number of agricultural chemicals. For each of the multi-species distributions of
compound specific LDs, values, the relative positioning of key test species within the distribution
provided the predictive power to approximate anticipated distributions based on limited data sets
made up of those key species. Inter-species extrapolations are thus made by predicting toxicity
distributions (based on demonstrated acute toxicity distributions) using data from those key test
species, the Mallard Duck, Japanese Quail and the Northern Bobwhite.

I nter-species extrapol ations of the other principle toxicity tests, the avian dietary LCs and avian
reproduction test, as well as any other new test protocols, could be approached using a similar
method. Toxicity data from key test species are compared to other species within data groupings
for key agricultural chemicals for which large databases exist. This, unfortunately, is where our
ability to perform similar inter-species extrapolations ends. Avian LCs, and reproduction tests
generated for agrochemical registration purposes for the past 30 years have relied, almost
exclusively, on the Mallard Duck, Japanese Quail and the Northern Bobwhite. Unlike the LDs
test that has been applied to wide varieties of test species in many test compounds, there are few
distributions of multi-species data available for the standard LCs, or reproduction tests. In order
to devel op inter-species extrapolation capability for these tests, more must be known about the
comparative responsiveness of avariety of avian speciesin order to predict sensitivity of wild

birds in the environment from results with key test species.

There are several examples of chemicals that have been examined for specific reproductive
endpoints that might offer insight into the nature of distributions. The principle example is the
large data base on the occurrence of eggshell thinning with DDT and its metabolites (Lloyd Kiff,
The Peregrine Fund, pers. comm.). A wide variety of species has been tested for eggshell thinning
and areview of that literature may provide insight into the nature of distributions of sensitivity.
Another similar database may be constructed from work investigating effects of dioxin-like
compounds and their teratogenic effects on avian embryos. Aside from these compounds, there is

little data available in sufficient breadth for use in distribution devel opment.
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To effectively devel op inter-species extrapolation capability similar to that used for LDsgs, there
are two data collection needs. Firgt, to appropriately interpret LCso and reproduction test data,
findings with the three key test species must be put into perspective with data from other relevant
wild species. Until there are sufficient data to create distributions of comparative sensitivity, the
relevance of standard test species data cannot be effectively assessed. Second, in order to make
optimal use of this approach, key representative chemicals and avian species, chosen for their
abundance of data in the L Ds, database, should be chosen for further focused assessment. This
approach will yield benefits at two levels. 1t will provide the data necessary to develop
“horizontal” distributional analysis and creation of inter-species extrapolation techniques
necessary for the LCs, and reproduction tests. Perhaps as important is that the choice of test
compounds and species similar to those with rich LDsy data will allow “vertical” integration
between toxicity tests. A better understanding of the comparative distributions of toxicity data
within each test, and how those distributions change in between-test comparisons may allow for
extrapolation not only between species, but between tests. Taken to its extreme, it may be
possible, given sufficient background data on a variety of chemicals, to predict LCs, or
reproduction distributions based on minimal key species tests or even from an LDs distribution.
The ability to perform these types of comparisons will require, however, an effort to better
characterize distributions of toxicity beyond the mallard duck, Japanese quail and northern

bobwhite for the avian L Cs, and reproduction toxicity tests (see recommendations in chapter 7).

It is proposed that, until further work is done with the L Cs, test, that the factors devel oped with
the LDs, be applied to the results of LCs tests. It could be argued that the "real” interspecies
variability associated with the LCs isjust as likely to be lower than greater than observed with the
LDs test. It isimportant to remember that the LCs, test deals with issues beyond the sensitivity of
birds to toxicants such as the onset of illness, food avoidance and body burden, al related to the
tempora components of dose consumption, absorption, metabolism and excretion. Extrapolations
from one species to another cannot be made except with a compound that has been well-studied
for its pharmacokinetic properties. At the moment, given how little is know, it must be assumed
that the inter-species variability seen with the LDs, test is applicable to the LCs,. At the very least,
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it is the best measure of the sensibility of species to toxicants and that is definitely an element
involved in the variability associated with the LCs, test.

For the reproduction study, however, the factors from the L Ds, work should not be used. The
toxic mechanisms are most often different from the ones involved in acute toxicity. Predictions are
difficult to make. In areview of reproduction studies done with the Mallard and Bobwhite Quail
(Mineau, Boersma and Collins 1994) showed that for developmental effects results differed
significantly between the two species. There was greater similarity between the rat and bird results
than between those obtained in the two bird species. This suggested there are doubts about the
ability to extend the results of an avian reproduction study to any potentially affected bird species.
The authors concluded that the current reproduction study be recognized only as arough
screening tool. Thereforeit is proposed that if any significant effect is detected in either of the two
species that further work be done on more species, but that the study be tailored to the focal
species and to understand the origin of the observed effect. Thisimplies that, for the purpose of a
probabilistic risk assessment, the reproduction endpoint would always consist of one point. The

probabilistic element would have to come only from the exposure side of the modeling efforts.

46 OUTPUT OF EFFECTSASSESSMENT

The basic output of the effects assessment is an estimated dose-response profile, that estimates the
probability or magnitude of a specified effect to the focal species at agiven level of exposure,
along with the uncertainty of the estimate. This effects profile quantifies the relationship between
exposure to the pesticide and the assessment endpoint. In the event that the focus species
representing the species of concern for the risk assessment is the same as the species tested in the
toxicity study, the effects profile would be the same as the dose-response relationship derived
from the study. Typicaly, the test species will not be the same as the focal species and the effects
profile must account for the uncertainty associated with extrapolating among species. Uncertainty
from interspecies variability is one mgjor source of uncertainty that must be considered. Other
sources include uncertainty from intraspecific variability and sublethal effects. Another large
unknown is the relationship between laboratory results and effects in the field which will be
affected by the quality of the simulated exposure, differences in inherent toxicity between
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laboratory and field populations, and the variable influence of stress of captivity on toxic

responses among SPecies.

The nature of the effects profile varies with the amount of data available, the desired level of
certainty for the analysis, and the nature of the assessment endpoints. Depending on the desired
level of certainty and the assessment endpoints, additional testing and chemical and/or biological
data may be required. Uncertainty analysis has not been explicit in the current regul atory
assessments and has been managed by introducing conservatism into the risk assessment. The
proposed effects characterization will identify and incorporate various sources of uncertainty into
the effects profile and aim to characterize and reduce these at increasing levels of refinement. The
objective of this section isto summarize options for refined effects testing, effects analysis, and
consideration of uncertainty into Levels of Refinement that focus efforts on the most sensitive
parameters in the analysis, and enable the risk assessment to be refined. Idedly, the effects
characterization should consider measurements of acute (mortality), reproductive and other
sublethal) effects across short-, medium- and long-term periods of exposure. However to date,
chronic effects have focused on reproduction and have been associated with only long-term
exposure (Table 4.6-1). Consequently, considerable research is required to develop new toxicity
tests. Asaresult, the Levels of Refinement for effects analyses will reveal that only acute
assessments of mortality following short-term exposure can be determined reasonably well using
existing tools, and that other areas require considerable research associated with developing

suitable toxicity tests and associated methods for effects characterization.

Table 4.6-1. The relationship between current toxicity tests and assessment endpoints associated with
various periods of exposure. ldeally, each endpoint should be assessed at short-, medium- and long-term
periods of exposure.

Short-term Exposure

Medium-term Exposure

Long-term Exposure

Acute endpoints

Oral LDsytest

No assessment

Reproduction endpoints

No assessment

No assessment

Reproduction Test

Other Sublethal
endpoints

No assessment

No assessment

No assessment

In order for avalid risk assessment to be conducted, the periods of exposure used in toxicity
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studies and considered in the effects analysis must approximate those used in the exposure
analysis. Four distinct Levels of Refinement for the characterization of effects have been
identified (Tables 4.6-2, 4.6-3, 4.6-4) for each period of exposure (short-, medium- and long-
term) and the three toxicity tests most often carried out on birds (acute, dietary, and
reproduction). The progression from low to higher levelsis not rigid and ams to reduce or at
least quantify various uncertainties associated with the effects characterization. Depending on
the situation, any element recommended at higher levels could be put into place earlier in the risk

assessment process.

Similarly, the effects characterization may remain unchanged and yet the resulting risk assessment
could be refined due to arefinement of the exposure assessment. The need to move to higher
Levels of Refinement for the effects characterization is generally dependent on the acceptability of
risk from the risk assessments and uncertainty. Results from a sensitivity analysis may indicate a
need for refinement in exposure or effects, or both. The characteristics of further studies and tests
especialy at higher Levels of Refinement will be driven by the results of a sensitivity anaysis.
Effects analysis at various Levels of Refinement are very much limited by available test species for
toxicity testing and suitable study designs. It is often very difficult to obtain permission from U.S.
Fish and Wildlife Service to test wild avian species to provide additional data to that from
common test species (i.e., mallard duck, bobwhite quail, Japanese Quail). Consequently, the
methods for effects analysis are tailored to make the most of available data while giving due
consideration to uncertainty with an emphasis on an outstanding need to redesign dietary tests.
Tablesfor Levels of Refinement illustrate the types of responses obtained, the analysis providing
the profile of the effect, the sources of variability accounted for, the modifications to current tests,
additional tests recommended and the sources of variability not accounted for. The effectiveness
of these Levels of Refinement in refining the risk assessment and reducing uncertainty will be

determined as part of future “Proof-of-Concept” research involving case studies.
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Table 4.6-2

periods of exposure by direct ingestion of the pesticide within minutes or hours.

Levels of refinement for avian toxicity testing and effects analysis associated with short-term

Short-term Level | Level 11 Level 111 Level 1V
Test Species Focused study
- EF S dependent on:
Focal Species -Sensitivity
..................................................... andlysis
Dose-response (DR) -Uncertainty
for mortality -Exposure
Toxicity Test -Full LDsg DR for | -Full LDsg DR for | -Full LDsg DR for | -Field dataon
1 test sp. 1 test sp. 1 test sp. focal or surrogate
(N<4) -LDso for 1 or 2 -LDsg for 3 test spp
test spp by ALD or | spp by ALD or full | -Pen-type study
full DR (N<4) DR (N3 4)
-Granular
formulation test
Effects Analysis -EF based on historical data -Probability -Mortality
for Focal Species | -Extrapolateto “fixed” LDsg (5" %tile) distribution estimates based on
or defined for focal field exposure
-Extrapolate to distribution species -Inputs for
- Caculate modeling effects
5"ostile on population
dynamics
I nter specific Application of EF | Application of EF | Distribution is Extrapolations to
Variability to LDsg to geometric mean | defined focal speciesas
of LDsg's necessary
I ntraspecific Accounts for: Variability within
Variability -Variability in sensitivity (slope of DR) among individuals study population

- Variance in estimate of mortality from dose ingested

measured

Uncertainty not
accounted for

-Variability in response from age

-Variability in slope of DR among species

-Variability from environmental conditions

-Effects of short-term exposure on sublethal endpoints

Regions, crops,
uses and species of
concern that differ
from field study

M odifications
(research)

-Determining effects on sublethal endpoints from short-term
exposure

-Further evaluation of use of EF approach

-Appropriateness of ALD or alternative test

-Requirement for toxicity testing non-granule formulations

- Test method under development for avoidance behavior
associated with seeds and baits and avoidance for granule and
spray formulations needs to be developed.
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Table 4.6-3

periods of exposure to the pesticide in the diet over a period of days.

Levels of refinement for avian toxicity testing and effects analysis associated with medium-term

Medium-term Level | Level 11 Level 111 Level 1V
Test Species Focused study dependent
- EI_: <_E_F on:
Focal Species -Sengitivity analysis
..................................................... -Uncertainty
Concentration- -Exposure
response (CR) for
mortality Asfor short-term
Toxicity Test -Full short-term -Full LDs, from -Full LDs, from -Field data on focal or
exposure LDso DR | CR for 1 test sp. CRfor>1testsp. | surrogate spp
for 1 test sp.t (new test) (new test) -Pen-type study
Effects Analysis Asfor short-term -EF based on historical LDgy's? -Mortality estimates

for Focal Species

-Extrapolate to “fixed” LDso (5" %tile)

or

-Extrapolate to distribution

based on field exposure
-Inputs for modeling
effects on population
dynamics

I nter specific Asfor short-term | Application of EF | Application of EF | Extrapolations to focal
Variability to LDsg to geometric mean | Species as necessary

of LDsg's
I ntraspecific Aslisted for short- | Accounts for: Variability within study
Variability term -Variability in sensitivity (slope of CR) population measured

among individuals

-Variance in estimate of mortality from
dose or conentration ingested

Uncertainty not
accounted for

- Aslisted for
short-term

-Test from short
and not medium-
term exposure

-Variability in response from age
-Variability in slope of DR among

species

-Variability from environmental

conditions

- Medium-term exposure resulting in

sublethal effects

Regions, crops, uses and
species of concern that
differ from field study

Research ®

-Development of
appropriate trigger
for movement to
Level 11 *

-New test
(quantifiable
observations of
sublethal effects’,
individual caging,
frequent measures
of food
consumption, food
avoidance
assessment,
dynamic exposure
regime)
-Appropriate EF
(number of test
spp.)

-New test
(quantifiable
observations of
sublethal effects’,
individual caging,
frequent measures
of food intake, food
avoi dance assessed,
dynamic exposure
regime)

-Refined exposure
in toxicity test
-Food avoidance
test (separate)
-Determine number
of spp. to be tested
-Determine when
EF unnecessary

-Aviary or pen testing

!} The full short-term LDsp test is used to assess Level | medium-term effects. Level Il (medium-term effects) will be triggered
based on an unknown or new chemistry, mechanistic (e.g., where delayed action), potential to bioaccumulate, or persistence.
2 Currently, historical data available only for acute oral LDso. Future objective to base EF for effects from medium-term
exposure on a new medium-term dietary toxicity test.
% Research is necessary because 1) there is no confidence in the existing dietary LCs test 2) there is no historical data
appropriate for determining EF' s for medium-term effects
4 May result in trigger for assessment of sublethal effectsin chronic tests
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Table 4.6-4 Levels of refinement for avian toxicity testing and effects analysis associated with long-term
2 periods of exposure to the pesticide in the diet over a period of weeks.

Long-term Level | Level Il Level Il Level IV
Point estimate -Possibly an aviary | -Risk assessment Focused study
NOEL from most or small pen study | refined only on dependent on:
sensitive species Sp.INOEL -Dependent on basis of exposure | -Sensitivity
assumed to equal outcome of further | assessment not analysis
NOEL for focal * Sp.2 NOEL research toxicity -Uncertainty
species source
mg/kg/d -Exposure
Toxicity Test -Reproduction -Refined exposure | No additional -Field dataon
toxicity test for 2 regime toxicity studies focal or surrogate
test species’ -Focus on spp
sensitive/critical -Field assessment
endpoints of reproductive
-Refinement of effects on marked
NOEL (or populations of
development on birds or sentinel
concentration- populations (e.g.
response for new nest box studies)
test)
Effects Analysis -Lowest NOEL -Dependent on -Reproductive
for Focal Species | value selected to outcome of further effects based on
represent sensitivity | research field exposure
of focal species -Inputs for
modeling effects
on population
dynamics
I nter specific Data available for Extrapolations to
Variability only 2 test spp. focal sp. as
necessary
I ntraspecific Test not designed to Variability within
Variability deal with this study population
aspect measured
Uncertainty not -No DR (cannot Regions, crops,
accounted for predict magnitude uses and species of
of effect asa concern that differ
function of from field study
exposure)
-Variability within
and among spp.
-Variability from
environmental
conditions
-Effects of short-
term exposure on
sublethal endpts
Research -New test (dynamic | -Large aviary test
exposure regime, -Include emphasis
proven egg-layers on parental care
using pre-treatment | (egg incubation)
laying as covariate) | -Focus on critical
-Determine endpoints
appropriate EF for | - Dose-response
extrapolation to testing
focal species

3 ! The current reproduction test with modifications to the exposure regime will be used until replaced by a new reproduction test
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There are four Levels of Refinement for avian toxicity testing and effects analysis associated with
short-term periods of exposure (minutes or hours) following direct ingestion of the pesticide
(Table 4.6-2). The basic element of the effects profile from short-term exposure is the dose-
response relationship generated from the existing acute oral toxicity test. At Level I, asingle
dose-response test that quantifies mortality is required. Assuming the response takes a typical
sigmoidal shape relative to the dose, the Probit model can be fitted to the data to get the slope and
LD50 estimates From the resulting regression equation, one can estimate the proportion of the
test population affected at a given exposure dose. For each test there is uncertainty associated
with the estimate of the LD50 and the slope. Consequently, for each exposure dose thereisa
distribution of possible values of the effect which can be used in a probabilistic assessment in
place of asingle point estimate. A specific dose may be determined to represent the LD50 in a
test, but based on the uncertainty in the dose-response relationship, the possible effect at that
dose, for example, may have ranged from 30% to 70%. In addition, most risk assessments are
faced with estimating the risk of a pesticide to species that have not been directly tested in the
laboratory or field. Variation among species in sensitivity to pesticides has been demonstrated to
be substantial and may be the greatest source of variation for integrating effects estimates of
untested species into the probabilistic assessment (see Section 4.5). Where no data exist on the
toxicity of the focal species, the distribution of potential toxicity valuesis estimated by applying
an Extrapolation Factor (EF) to LD50 data for test species (Section 4.5).

To refine this extrapolated mortality estimate at Level 11 (Table 4.6-2), it is necessary to conduct
atoxicity test on the focal speciesor, if thisis not possible, another acceptable test species. In
the case of the acute toxicity test, an ALD (up-down) test for one or two additional species may
be adequate to estimate the LD50 with the slope of the relationship assumed from the definitive
test conducted on another species. Further research is required to assess the benefits of using
ALD tests over full dose-response tests for obtaining data on additional test speciesat Levelsl|
and I1l. Thiswould entail an assessment of the confidence in assuming similarity in dope
(intraspecific variability) among species. At Level Il an EF is applied to the geometric mean value
of the LD50' s for each test species to extrapolate to an estimated LD50 for the focal species that
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is based on the 5th percentile. Where the chemical of interest is aformulated as a granule, a
separate acute oral dose-response test would be conducted with the granular formulation.
Additional research is necessary to determine the necessity for testing with other types of
formulation and to determine how these results would be considered in the effects
characterization. In addition, research is required to devel op tests for assessing avoidance
behavior associated with short-term exposure.  Some work has been conducted on avoidance
associated with seeds and baits however techniques for measuring avoidance associated with

granule and spray formulations still needs to be devel oped.

At Level 11, additional toxicity testing (ALD or full dose-response test) is conducted so that
LD50 values are available for at least four test species. With greater than or equal to four test
species, it is appropriate to calculate the parameters of the estimated dose-response distribution
for the focal species (section 4.5). The uncertainty in ope and LD50 parameter valuesis
represented by the standard error of the mean of the LD50 values (see section 4.5). It is
recommended that additional research include further statistical review of the EF methods
including the appropriate number of test species for calculating parameters of a distribution, and
use of dope estimates in extrapolations. The proposed approach aso assumes that the variance in
species senditivity for toxic pesticides is similar to that for less toxic chemicals. Additional
consideration of this assumption could potentially provide a means of explicitly accounting for
differences in sengtivity from different modes of action. A further problem is that in practice,
acute oral toxicity tests often result in an absence of mortality at alimit dose. Further research is
required to determine an appropriate approach for characterizing effects for use in risk assessment

when this situation occurs.

The methods outlined in Levels | through I11 account for variability among species, variability in
the sensitivity among individuals within a species as estimated from the sope. In addition, the
methods account for variance in the predicted mortality of the focal species as estimated from the
dose ingested. The methods do not explicitly account for uncertainty resulting from variance in

the age of animals or environmental conditions affecting sensitivity to the pesticide nor variability

4-82



10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

in the slope of the dose-response among species. A limitation is that only mortality and not
sublethal endpoints from short-term exposure are considered in the effects characterization.
Important sublethal effects associated with some compounds are neglected with current toxicity
testing. For instance, transient paralysisin a laboratory situation, under controlled conditions,
whileinsignificant in this setting, become critical to the survival of the individual in the natural
world. Also effects of short-term exposure on parental behavior could affect their successin
rearing off-spring. While observations are made of such sublethal effects they are not quantified
in amanner amenable to statistical treatment or input into a dose-response model. Numerous
methods, developed by animal behaviorists, could be adopted to better integrate this neglected
aspect of acute toxicity testing. Further research is necessary to determine how to quantify these

effects and to incorporate such measurements in the effects characterization.

Effects characterizations associated with short-, medium- and long-term exposures at Level |V
involve focused pen-type studies or field studies (Tables 4.6-2, 4.6-3 and 4.6-4). The guiding
principles for these studies is that they are case specific and driven by a need to further assess key
parameters identified in a sensitivity analysis associated with the risk assessment. Consequently,
the studies may focus on refining exposure assessments rather than effects or on reducing
uncertainty associated with parameters such as Food Intake Rate (FIR) and Avoidance (AV).
Field studies may also provide estimates of mortality based on more realistic exposure regimes.
They may also provide input values for modeling longer-term effects on population dynamics.
Level 1V studies will be site and scenario specific and therefore will not account for uncertainty
associated with differences among regions, crops and species of concern that differ from the study

scenario but are relevant to the risk characterization.

Levels of refinement for toxicity testing and effects analysis associated with medium-term
exposure in the diet over aperiod of days are shown in Table 4.6-3. Toxicity testing involving
medium-term exposure does not occur synchronously with short-term exposure assessments.
Level | short- and medium-term effects assessments are the same. However, specific criteriafor

triggering the requirement for Level 11 medium-term assessment have been identified. The
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principles of these criteriainclude

The test chemical is from arelatively unknown or new chemistry ,

An evaluation of the mechanism of toxicity indicates that a medium-term effect could occur

e.g., adelayed action,
The test chemical has the potentia to bioaccumulate ,

The test chemical islikely to be very persistent on avian food stuffsin the environment.

At Leve |1, afull concentration-response dietary study for 1 test species that follows a new
testing design isrequired and at Level 111, tests on additional species would be required. The
existing dietary test has many problems rendering it inappropriate for risk assessment. The study
does not provide a reasonable estimate of toxicity because measurements of dose ingested per
individual are not possible and apparent toxic effects are confounded by starvation. The proposed
changes to the study for Level Il and I11 assessments will replace the existing dietary study and
will be based on the 21 day exposure OECD proposed test design (section 4.2) and will include
guantitative measurements of subletha effects, individual caging and measures of food
consumption, and an assessment of food avoidance. Unlike the proposed OECD dietary test
design, this new study would include an option for using a dynamic exposure regime that could be
aligned with dissipation rates of the chemical on avian food itemsin the environment. Individual
assessments of food consumption will be used to estimate the daily dose consumed and related to
mortality (mg/kg food to mg/kg body weight per day). In addition, the concentration-response
will include non-letha endpoints. At higher levels, where the exposure regime is refined, better
estimates of daily “dose” consumed can be obtained and the concentration-response will better
reflect the predicted exposure pattern. To further refine effects assessments at Level 111, a stand
alone avoidance test would be an option where avoidance was considered to be an important

factor based on Level |l assessments.
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The preferred method for analysis of effects from medium-term exposure would be to use the EF
approach described for short-term assessments (Table 4.6-2) but to base the EF on historical data
from dietary studies. However, amgor limitation isthat a historical data base on which to derive
appropriate EF sfor dietary tests does not exist. 1n addition, unlike the acute oral toxicity study,
there is minimal confidence in results from the existing dietary test. Until such atimethat a
historical data base for medium-term dietary toxicity studies can be developed, and associated

EF s derived, the medium-term effects characterization will use the EF' s proposed for Levels|

and Il short-term assessments.

Levels of Refinement for toxicity testing and effects analysis for chronic effects following long-
term exposure are shown in Table 4.6-4. In summary, the current avian reproduction test has
severe limitations concerning its use in ecological risk assessments and needs to be redesigned.
For Level |, avian reproduction tests will be conducted on two test species and the current test
will be used until it can be replaced. The NOEC and LOEC can be compared to the exposure
profile to determine the degree of exceedence (Chapter 5) and for both Levels| and |1 the NOEL
from the most sensitive species will be used in this assessment. However, in order to estimate the
magnitude of reproductive effects, the study needs to be redesigned to determine a dose-response
relationship with an acceptable level of statistical power and to address issues of compatibility
with the exposure profile. Following the development of a dose-response type study, appropriate
EF swill have to be determined to apply to appropriate effect-concentration thresholds to account
for various sources of uncertainty. This dose-response test would be required at Level 1. The
new avian reproduction test will be based on the proposed OECD test method and will include an
option for refining the exposure regime to simulate the use pattern and behavior of the test
chemical on avian food stuffsin the environment for both Level | and Il. Recommended research
also includes modifications to the design at Level |1 to assess effects on parental care and criteria
for necessitating measurements for sublethal effects based on those measured in the medium-term
dietary study. At thisstage, Leve |1l long-term assessments would involve only arefinement of

the exposure analysis and not further refinement of effects beyond that identified in Level 1.
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In conclusion, the certainty in generating a reasonable analysis of effects for risk assessment is
greatest for the short-term assessment that utilizes the existing acute oral toxicity study. Certainty
decreases for medium-term assessments where the existing dietary study needs to be redesigned,
and an absence of historical data prevents the development of specific EF's. Certainty isleast for
long-term effects assessments where the existing reproduction study is inappropriate for
probabilistic risk assessment. Important modifications to medium and long-term toxicity studies

include
Flexible exposure regimes,
Assessments indicative of quality of parental care,
Individual data thus improving options for effects analysis models, and
Avoidance.

The Levels of Refinement are presented in such away that risk assessments can be improved with
existing tools while new ones studies and analyses methods being developed. The proposed
Levels of Refinement will require modification depending on the outcome of further research, and
the hypothesis that new tests are significant improvements to existing studies must be tested. The
outcome of further method devel opment will have implications for management of uncertainty
associated with intraspecies and interspecies variability, methods of effects anaysis and risk

assessment.
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5.0RISK ASSESSMENT METHODOLOGY

51 OBJECTIVE OF RISK ASSESSMENT

Risk characterization is afinal stage of ecological risk assessment where results of exposure and
effects analyses are integrated to evaluate the likelihood of adverse ecological effects occurring
following exposure to a stressor. The risk assessment is different from the effects profile
characterization (Chapter 4.0), in that the risk assessment integrates the effects profile with the
exposure profile for the pesticide, and the probability and magnitude of effects on non-target
organisms in the environment can be determined. In the risk characterization, the ecological
significance of the adverse effects should be discussed, including consideration of the types and
magnitudes of the effects, their spatial and temporal patterns, and the likelihood of recovery
(USEPA, 1992). This section discusses methods for risk assessment. Risk assessment is the
analysis component of the risk characterization that integrates exposure and effects and evaluates
uncertainties (USEPA, 1998). In addition to an evaluation of uncertainty, the risk
characterization should provide a discussion of the ecological significance of effects with
particular emphasis on the magnitude and spatial-temporal extent of effects. The risk
characterization should link back to risk associated with the assessment endpoints that were
defined in the Problem Formulation stage. The assessment endpoints determined by ECOFRAM
in the Problem Formulation stage (Chapter 2.0) werei. effects on the survival and reproduction
of individual birds and mammals ii. effects on population size and persistence of birds and
mammals. Risk associated with assessment endpoints needs to be interpreted in the risk
characterization to provide concise information that can be used for risk management. If the
information is insufficient to support decision-making by risk managers, or the risk assessment
needs to be further refined, it may be necessary to proceed to a further iteration of the risk

assessment or to a higher level of refinement in the risk assessment process (Chapter 6.0).

A suite of potential methods for ecological risk assessment are described that include
deterministic quotients, comparisons of exposure to effects distributions (or point estimate),
integrated exposure and effects distributions (using Monte Carlo simulations) and mechanistic
models. The basic objective of each different method is to demonstrate how the exposure and
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effects analyses may be combined to provide an estimate of risk. The risk output can be
displayed in many different formats and should be modified according to the questions being
asked by risk managers. In general, the risk assessment is portrayed using a cumulative
probability distribution to illustrate the probability of a certain size of effect affecting a certain %
of apopulation. Examples are provided to demonstrate the risk assessment methods, including
“gpreadsheet model” methods that integrate exposure and effects distributions by using
stochastic modeling to smulate many individuals in a population. This particular method will
help to determine effects at a population level however, the risk assessment provided is still
inadequate in its capability to truly provide assessments for determining effects on actual
population size and persistence. Options for risk assessment methods for terrestrial vertebrates
are affected by mgjor limitations in available data to characterize exposure and effects.
Consequently, the methods will need to further evolve as these research needs are addressed and
also improve in their capability of characterizing the risk associated with assessment endpoints
of interest.

The following are genera criteriafor selecting tools for risk assessment that will provide
probabilistic estimates of risk:
For effective decision making, risk managers need to be provided descriptive information on
risk that describes the probability and magnitude of adverse effects.
A suite of methods may be the most effective way of providing the flexibility necessary to
manage a diversity of pesticide scenarios where arefined risk assessment is necessary.
Methods within the suite are grouped according to the level of sophistication, effort required,
datarequired, and extent of risk refinement. This forms the basis of the risk characterization
process (Chapter 6.0)
Risk assessment methods must be aligned appropriately with methods used for exposure and
effects analysis with due consideration to the unit of time used in the analysis and the
different uncertainties.

5.2 OVERVIEW OF RISK ASSESSMENT METHODS
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All of the risk assessment methods considered integrate outputs from the exposure analysis (Fig.
5.2.1, graphs A., B., and C.) with the effects profile (Fig. 5.2.1, graph D.) in order to determine
the probability of an adverse effect on non-target organisms. How risk is expressed will vary
depending on the risk assessment method used and the questions that need to be addressed with
the risk assessment (Fig. 5.2.1, graphsE., F., and G.). For example, the probability distribution
function (PDF) is useful for illustrating the discrete probability of various input parameters
whereas the cumulative distribution function (CDF) can more clearly show the probability that a
value on the x-axis will not be exceeded (graph F.) or the probability of exceeding avalue on the
x-axis (graph G.)
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Fig.5.2.1 A conceptual model of the distributions associated with an ecological risk
assessment. The exposure analysis is composed of a residue and a biological component
resulting in an estimate of dose. The exposure dose is integrated with the effect analysis
resulting in an estimate of risk which can be expressed in a number of different ways
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Various options for risk assessment have been considered in order of increasing complexity and
potential realism (see Fig. 5.2.2). Lessredlistic risk assessment methods will tend to be more
conservative and with increasing realism, conservative assumptions including values in the risk
assessments can be replaced as further information is obtained. These risk assessment methods

can generally be divided into three categories:

i. Deterministic quotientsthat are simply aratio of single values of exposure divided by
toxicity (Fig. 5.2.2; Method 1). A magjor limitation of this method is that the result is not
expressed probabilistically.

il. Assessment methods that involve a comparison of the exposure distribution or fixed
value for exposureto a fixed value for effectsor distribution. These provide a probability
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of exposure levels (from a cumulative frequency distribution) exceeding a fixed effect level
(ratio-based) or vice-versa (Fig. 5.2.2; Methods 2 and 3). A limitation of these methodsis
that an estimate of the probability of magnitude of effect occurring, based on the complete
exposure and effects distribution is not given. In other words, risk is expressed as the
“probability of exceeding afixed value’. This method has been proposed by the aquatic
ECOFRAM workgroup for aquatic risk assessments.

Methods that incor porate functions to integr ate exposur e and effects distributions (Fig.
5.2.2; Methods 4, 5 and 6). These methods use stochastic modeling (Monte Carlo techniques)
to simulate variability associated with parameters and individuals. In Method 4, distributions
of quotients are generated using Monte Carlo simulations to randomly sample values from
exposure and effects distributions. Here, the probability of exceedance is based on aratio of
exposure to effects rather than fixed values of exposure or toxicity. Method 5, integrates
exposure and effects distributions by simulating the resultant fate (e.g., dead or alive) of large
numbers of individuals (using Monte Carlo) based on a dose-response distribution or
survivorship model. Risk is expressed as a probability of a magnitude of effect occurring
based on randomly sampling the complete distributions of exposure and effects. Method 6
refers to more complex and data-intensive individual-based and population-level models.
Unlike the previous methods described, these models should not only integrate exposure and
effects distributions using algorithms that represent various ecological or physiological
processes but also provide a spatial-temporal analysis of the non-target organism and/or
information that describes cause and effect. These models may aso incorporate risk
assessment modules based on Methods 1 through 5.
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1 Fig.5.2.2 Overview of Risk Assessment Methods

o S e
w N L, O

Method 1
A Point Estimate Quotients (deterministic) Ratio of
- Exposure: Point estimate of exposure (mg/kg b.w./ unit time) i
IF_;ieslfrA?Seilssgr% e E?fectsu: Pointlestimlclte of toxic):(ity (g.g., NOEL, LVSS(;J) o zlfng((;c\)ls&rl:s
Output: A ratio of exposure/toxicity (relative to risk but risk is not quantified) and effects
Method 2 +
Comparison of Exposure Distribution with Point Estimate for Effects A Risk based
Exposure Distribution of exposure (mg/kg b.w./ unit time) ISk based on
Effects Point estimate of toxicity (e.g., NOEL, LD50) gfchmg:{:fs n
Output Probability of exposure exceeding the effect level and gffect
distributions
Method 3 ¢ (Probapility of
Comparison of Exposure and Effects Distributions (degree of overlap) E;Z%esgﬂs
Exposure Cumulative frequency distribution of exposure (mg/kg b.w./ unit time)
Effects Distribution of toxicity for i. various species or ii. single species (e.g., LD50)
Output Probability of certain effect occurring when a fixed exposure level is exceeded v
Method 4 +
Distribution-Based Quotients (uses Monte Carlo Simulations) A
Exposure Distribution of exposure (mg/kg b.w./ unit time)
Effects: Distribution of toxicity for i. various species or ii. single species (e.g., LD50)
Output Probability distribution of quotients (probability that exposure exceeds toxicity)
Method 5 +
Integrated Exposure and Effects Distributions (uses Monte Carlo Simulations) Risk based an
Exposure Distribution of exposure (mg/kg b.w./ unit time) integration of
Effects: Distribution of toxicity (dose response distribution) exposure and
Output Probability of certain magnitude of effect (mortality) occurring effects
distributions
Method 6 +
Mechanistic/Process models
More Realistic Stage/Age structured; Meta-population; Individual-based; Spatially explicit models
Risk Assessmentv
2 \J
3 Table5.2.1 summarizes the advantages and limitations of Methods 2 through 5. All of these
4 methods have their value and are equally applicable to risk assessments for birds and mammals.
5  Future development of risk assessment models together with communication with risk managers
6  will be necessary to determine which of these risk assessment methods are most useful in a
7 regulatory framework. The simplest methods may serve astools for screening in order to scope
8 therisk assessment (Method 1) or they may be the only applicable method due to limitations in
9 availabledata. For example, current avian reproduction test endpoints are limited to a NOEL
and therefore are dependent on Methods 1 and 2 because it is not possible to apply risk
assessment methods that depend on a knowledge of the dose-response distribution (e.g., Method
5). Inal methods, deterministic estimates or distributions of exposure and effects are expressed
in mg/kg body weight per unit time. The unit time will be dependent on whether the assessment
isfor short-, medium- or long-term periods of exposure.
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1 TABLES5.21 STRENGTHSAND WEAKNESSES OF DISTRIBUTION-BASED PROBABILISTIC RISK ASSESSMENT METHODS
2 (METHODS2THROUGH 5)

Method | Type Description Strengths Weaknesses
2 Comparison | -Risk isthe probability that | -spatial-temporal analysis of -under utilization of toxicity data
of Exposure | afixed effect level lies exposure possible -no cause-effect information
Distribution | within the exposure -can be used where no dose- -no spatial-temporal analysis of effects
with toxicity | distribution response available -no probability of magnitude of effect
Point
estimate
3 Comparison | -Analysis of degree of -gpatial-temporal analysis of -no spatial-temporal analysis of effects
of overlap of distributions exposure possible -no cause-effect information
Distributions | -Risk is probability of -use of point estimate (e.g., -risk based a sample population
of exposure | exceeding afixed value 10th%tile) from distribution -no probability of magnitude of effect
and effects -Effects distribution may could be modified to use entire
represent several speciesor | distribution
single species
4 Distribution- | -Calculate distributions of -more information than single | -no probability of magnitude of effect
based guotients by sampling from | quotient -no cause-effect information
Quotients: distributions of exposure -can utilize all available -no spatial-temporal analysis of effects
(distribution | and toxicity toxicity data
of quotients | -Risk is based on the - can consider varying
(exposure/ probability of quotients (of | exposures
toxicity) exposure and effects) -can be used where no dose-
exceeding fixed levels response available
5 Integrated -Simulations (e.g., Monte -probability of magnitude of - no cause-effect information
Exposure and | Carlo) of large numbersof | effects based on exposureand | -no spatial-temporal analysis of effects
Effects individuals effects distributions (survivorship model provides atemporal
Distributions | - uses mortality response -gpatial-temporal analysis of anaysis)
function to integrate exposure possible
distributions
-Quantal response used
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Examples based on hypothetical data sets were developed to illustrate ecological risk assessment
Methods 1 through 5. These examples are not case studies and do not provide a proof-of-
concept but do allow a conceptual comparison of the risk assessment methods and their outputs.
The examples use distributions of exposure values (Table 5.2.2) and distributions of effects
(Table 5.2.3 and 5.2.4). For purposes of smply illustrating the risk assessment method, the
exposure values are entered to the risk assessments models as a fixed distribution (i.e., it is
assumed that the exposure analysis has been run separately). The risk assessment methods as
presented do not illustrate spatial and temporal elements. For the purpose of these examples, it is
assumed the time period of exposure in the field is equivalent to that used to derive the LDsp in
the laboratory (see section 2.8). Effect distributions 1a and 1b are from median letha dose
values for several different test species and can either represent the universe of sengitivity for the
focal species, where the actual median lethal dose is unknown, or the sensitivity of severa
species for amulti-species risk assessment model. Effects distribution 2 equates to the effects
analysis output described in Chapter 4.0 and represents the estimated or actual dose-response for
the focal species (i.e., asingle species model). The estimated L D5, for the focal species may be
assumed to equal that of the test species, or may be modified using an extrapolation factor that
varies according to the number of species tested. The single-species risk assessment is more
appropriate for population level assessments where the magnitude of effects and recovery are the
important aspects of the assessment. It assumes that the toxicity to the focal speciesis known or

that a specific level of protection is sought.

Table5.2.2 Exposure distributions used in risk assessment examples. Risk assessment
methods 2 and 3 used the probability distributions. The parameters of the distribution were used
for methods 1,4 and 5.

Exposur e Distribution

Exposure | % Discrete % Cumulative

mg/kg/d | Probability Probability
30 10 10
33 10 20 Distribution Type = | Lognormal
45 10 30 Mean = | 77.61
60 10 40 Standard Deviation = | 40.05
81 10 50 95 percentile=| 153.37
88 10 60 90 percentile=| 128.56
89 10 70
95 10 80
120 10 90
126 10 100
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Table5.2.3 Effectsdistribution 1a expressed as a probability distribution was used in risk
assessment examples for method 3. The parameters of effects distribution 1awere used in
examples for methods 1 and 4. Effects distribution 1b was used in risk assessment examples for
method 3. Effect distributions 1a and 1b are from median lethal dose values for several different
test species and can either represent the universe of sensitivity for the focal species, where the
actual median lethal dose is unknown, or the sensitivity of several species for a multi-species risk
assessment.

Effects Distributions 1a Effects Distribution 1b
LDsg % Pr Obablllty LDsg % Prob.
mg/kg/d | Discrete  Cum. mg/kg/d Cum.

90 25 25 | Distribution Type = Lognormal 150 20
120 25 50 | Mean= 203.51 155 40
250 25 75 | Standard Deviation= 119.92 195 60
350 25 100 | 5percentile= 71.43 210 80
10 percentile = 87.1 350 100

Table5.2.4 Effectsdistribution 2 was used in risk assessment examples for methods 2,3,4 and
5. Effectsdistribution 2 represents the estimated or actual dose-response for the focal species.
The estimated L D5 for the focal species may be assumed to equal that of the test species, or may
be modified using an extrapolation factor that varies according to the number of species tested.

Effects Distribution 2

NOEL L Dso 95%tile 5%tile
mg/kg/d mg/kg/d mg/kg/d mg/kg/d
120 220 260 180

For avian risk assessments there will typically be a separate assessment (and exposure
distribution) representing each type of focal species. In some instances, it may be only the
exposure distribution that changes according to the focal species with a more generic effects
analysis based on available test species. However, the effects analysis may also change where
estimates of the median lethal dose or dose-response are available for the focal speciesor ina
situation where toxicity datais available for the focal species. It isimportant to note that the
characteristics of the distributions for exposure and effects including what these distributions (or
point estimates) actually represent will affect the interpretation of the risk assessment output.
The selection of arisk assessment model and the expression of risk should be modified
according to the question being asked by risk managers. For each example, details of the output
information from the risk assessment is provided to illustrate how the output could be
interpreted. Probabilistic risk assessment examples involving stochastic modeling were generated
using Monte Carlo analysis within Crystal Ball (an MSExcel add-in for conducting model
simulations). Using this software (or similar software e.g, @RisK) it is very easy to view data and
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to fit distributions to data. Distributions can be used instead of afixed value to represent the
uncertainty associated with the fixed value. Where actual data are available, these data should
be preferentially used and the appropriate statistical distribution carefully fitted to data. Selection
of distributions based on minimal data, or datathat poorly fit the distribution, should be used
with caution. Where data are adequate, the empirical distribution based on the data should be
used.

Each risk assessment method will include assumptions and associated uncertainties. As methods
increase in sophistication, and their ability to provide arefined risk characterization for
assessment endpoints improves, in general, uncertainty should become better defined. An
essential element of the risk characterization stage will be to analyze and summarize the major
sources of uncertainty. Types of uncertainty include uncertainty associated with natural
variability (stochasticity), measurement or parameter error, and incomplete knowledge including
model error. The uncertainty in the ecological risk assessment will include the uncertainties
within the exposure and effects analysis and uncertainties associated with the risk assessment
method. Consequently, the risk assessment will include a hierarchy of levels of uncertainty that
will vary according to the scenario being simulated. Uncertainties within the exposure and
effects analysis are typically associated with natural variability and parameter error whereas
additional uncertainty ensuing from the risk assessment method may include incomplete
knowledge. Depending on the method of analysis used in the risk assessment, a sensitivity
analysis can be performed to identify the parameter most affecting the output such that a further
iteration of the risk assessment can be refined. Risk assessment refinements should focus on

these sensitive variables particularly those with the greatest uncertainties.

53 POINT ESTIMATE QUOTIENTS (METHOD 1)

In the FIFRA regulatory process to date, the quotient method has been used in risk assessment
for pesticides. Results from this method are not probabilistic. The quotient is aratio that
represents the smplest approach for comparing estimates of exposure and effects. A quotient of
single values for exposure and effects are calculated (exposure value/toxicity value) and if the
guotient exceeds atrigger value (equal to or lessthan 1), an adverse effect is considered likely to
occur. The quotient values do not quantify risk but provide results that are relative to risk.
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Limitations of this approach include:
There is no quantification of the magnitude and probability of adverse effects occurring.
Output cannot be compared to assessment endpoints.
Output cannot be compared to probabilistic estimates.
Thereis an increased dependence on expert judgment as the quotient approaches 1.
Only single points that usually represent the more sensitive or conservative data are used in
the estimate, other available data are usually ignored.
Because the estimate is conservatively biased, the safety margin may be large. However, the
actual size of the safety margin will remain unknown.
The method does not account for space or time.
Species tested in the laboratory are assumed equal to those in the field.

An evaluation of the effect of risk mitigation measures is difficult.

Advantages of this approach include:
Provides a crude index of magnitude of effects and therefore could be used for comparisons
amongst alternative compounds (where comparable data are available).
May identify certain groups of non-target organisms where risk islow and further assessment
unnecessary.
Identifies pesticides that are likely to be very safe in the environment when used in
conjunction with conservative safety margins.
Simple and low-effort method

Risk managers are familiar with the quotient method.

The quotient approach may have utility as afirst step (e.g., Level 1 and/or during Problem
Formulation) when it matches the needs defined in the conceptual model. The rationae for this,
isthat if achemical does not trigger alevel of concern then resource for further risk assessment
effort could be saved. A single quotient (Method 1) is generated by selecting point estimates
from the exposure or effects distribution (Table 5.3.1) for example the 95" percentile value for

exposure and the 5™ percentile for toxicity.
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Table 5.3.1 An example assessment using the point estimate quotients (Method 1)

Inputsfor Exposure and Effects Exposure LDso Quotient Value
(Effects Distribution 1a) mg/kg/d mg/kg/d (exposur e/toxicity)
Based on 95 and 5 %tile 153 71.4 2.1

Based on 90 and 10%tile 128.6 87.1 15

Based on worst case data points 126 90 14

The example shows that the exposure values exceed the L D5 values resulting in quotient values
greater than 1. This assessment does not indicate that an effect isunlikely. It does indicate that a
refined assessment is necessary to determine the risk. The assessment provides no information
on either the probability of an effect occurring or the size of the effect.

5.4 COMPARISON OF EXPOSURE DISTRIBUTION AND POINT ESTIMATE FOR
EFFECTS (METHOD 2)

In some circumstances, data supporting exposure assessments may be more available than
toxicity data and therefore resulting distributions for exposure more easily obtainable than
distributions of the effects profile. In this method, a single distribution of exposure is generated
and a point estimate of toxicity is selected. Risk is estimated based on the probability of the
effect level occurring within the distribution of exposure. This method is applicable where a
dose-response is not available and toxicity is represented by a NOEL. This method is also
applicable to situations where a point estimate of exposure is available and a distribution of
effects.

Exposure: A probabilistic distribution of exposure may be generated from two basic models 1.
Dietary model ii. Granule model.

Effects: Severa options are available and include: i. The point estimate represents a toxicity
endpoint (e.g., LDsp, NOEL) from the most sensitive species where dose-response data were
unavailable (e.g., avian reproduction test). ii. The toxicity estimate for the species could be
obtained from a generic species sensitivity distribution where there is no information on the
toxicity to the focal species. iii. The toxicity to the focal species has been estimated on the basis
of data from test species modified by an extrapolation factor. iv. The toxicity datafor the focal

speciesis available.
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Risk: Risk is expressed from a cumulative probability distribution of exposure to provide a %
exceedance of afixed effect level. For example, there is a 20% probability that exposure values
will exceed the effect point estimate (e.g., aNOEL).

An example: Method 2 (Fig. 5.4.1) uses the distribution for exposure and point estimates for
toxicity. The arrows on the solid line illustrate where the point estimate for toxicity of 90
mg/kg/d (equal to the lowest L Dsp value from Effects distribution 1a) intercepts with the
exposure distribution. This shows that 65% of the calculated exposure values will not exceed the
effect threshold of 90 mg/kg/d which corresponds to 50% mortality of exposed birds, and that
35% of exposure values would exceed the effect threshold and lead to more than 50% mortality
of exposed birds. The arrows on the dashed line illustrate where the toxicity threshold of 120
mg/kg/d (equal to the NOEL value from Effects distribution 2) intercepts with the exposure
distribution. This shows that over 90% of the calculated exposure values will not exceed the
effect threshold of 120 mg/kg/d which corresponds to a no effect level. In other words, < 10% of
exposure values would exceed this no effect threshold.
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Fig.54.1 Example of Method 2 (Comparison of Exposure Distribution with Point Estimate
for Effects). The arrows on the solid line illustrate where the point estimate for toxicity of 90
mg/kg/d intercept the exposure distribution. The arrows on the dashed line illustrate where the
toxicity threshold of 120 mg/kg/d intercept the exposure distribution.
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55 COMPARISON OF EXPOSURE AND EFFECTSDISTRIBUTIONS (METHOD 3)

Where sufficient data exist to provide meaningful distributions of both exposure and effects,
joint distributions can be compared to determine the extent of overlap. Risk can be expressed as
a probability of exceedance of afixed exposure level. In contrast to method 2, the probability of
exceeding different effect levels can be determined because the dose-response profile is known.

Exposure: A probabilistic distribution of exposure may be generated from two basic models 1.
Dietary model ii. Granule model. Thisis expressed as a cumulative probability distribution or a
discrete probability distribution.

Effects: i. The distribution is based on severa toxicity values (LDsy’'S) each representing a
different species or the distribution represents possible sensitivities for the untested focal species
(Effects Distributions 1aand b). Or, ii. The toxicity distribution represents a dose-response
distribution for the focal species. Variability associated with the dose-response (i.e., the LDs
and slope) can be introduced into the assessment using Monte Carlo techniques (see Method 4

below) or using statistical confidence limits.
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Risk: Risk isexpressed from a distribution of mortality probabilities. The probability of
occurrence of an effect level of a specific magnitude (e.g.,10, 25 or 50% mortality) when a fixed
level of exposure is exceeded can be determined.

Examples of Method 3 use the distribution for exposure and Effects Distributions 1a, 1b and 2.
A risk assessment based on Effects Distribution 1a where multiple LDs values are represented is
showninFig.5.5.1. Herethereisafairly extensive overlap between the distributions for
exposure and effects (species sensitivities represented by LDso‘s). At 129 mg/kg/d, the 90"
percentile for exposure values, L Dsptoxicity thresholds for 40% of species would be exceeded.
However, where the effects distribution represents uncertainty in sensitivity for the focal species
rather than sensitivities for multiple species, then for 90% of calculated exposure values thereis
a40% probability that the median lethal dose (L Ds) for the key species will be exceeded. A
Margin of Safety (quotient) can be calculated (Fig. 5.5.1) by dividing the 10" percentile for the
sensitivity distribution by the 90™ percentile for the exposure distribution (Solomon et al, 1996).
This givesavalue of 0.68 (87.1/ 128.56) which is considerably less than 1.0 indicating a
potential for unacceptable risk. Depending on the question asked, the same data used in Fig.
5.5.1 can be used to show the % Probability of Exceedance (reverse cumulative probability
distribution) for different species sensitivities as shown in Fig. 5.5.2. For example, thereisa
10% probability of exceeding the median lethal dose for 40% of species where the distribution
represents multiple species. Alternatively, there is a 10% probability of exceeding the 40"
percentile median lethal dose (LDsp) for the focal species (Fig. 5.5.2). Where, the effects
distribution represents a dose-response for the focal species (e.g., Effects distribution 2), this
type of plot can be used to show the probability of exceedance for % mortality (x-axis). Thisis
the method proposed by the aquatic ECOFRAM group for aquatic risk assessments.

A risk assessment based on Effects distribution 1b (Fig. 5.5.3) shows that at 129 mg/kg/d, which
represents 90% of exposure calculations, median lethal doses for approximately 20% of species
would be exceeded. This approach, based on representing multiple species, may be useful where
there is a need to interpret effects on a community of species (e.g., aquatic risk assessments). In
this type of assessment, there may be more than one relevant exposure distribution because
exposure for each species within the community may not be equal. The risk assessment could be
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based on the most conservative distribution or some other appropriate representation of exposure
to the community. However, typically in terrestrial risk assessment, the distribution of species
sengitivities will represent the uncertainty associated with predicting the sensitivity of the focal
species. Thusin Fig. 5.5.3 it could be concluded that for 90% of exposure values, there is a 20%
probability that median lethal dose for the focal species will be exceeded. In other words, for
10% of the time, thereisa20% probability that the dose lethal to 50% of the focal species
population is exceeded. Fig. 5.5.4 illustrates a risk assessment for afocal species where the
effects distribution is based on a single dose-response distribution (Effects Distribution 2). At
the 90™ %tile for exposure, negligible mortality would be expected.

Fig.55.1 Example of Method 3 (Comparison of Exposure and Effects Distributions) using
Effects Distribution 1a. They; axis represents the % cumulative probability distribution for
exposure and the y, axis represents the % species sensitivity (cumulative distribution of median
lethal doses). The shading shows the area of overlap of the 90"percentile exposure with the
species sengitivity distribution (intercepts at 129 mg/kg/d).

, 100 100
> 90 9 3
o —
S 30 = 80 2
< e
Y70 / e 70 3
% 60 60 2
8 50 50 E
T 40 40 3
£ 30 ﬂ 30 8
2 20 20 8
3 10 10 9

0 ' \' ' I ' I ' 0 °

0 100 200 300 400 B Exposure
mg/kg/d ¢ Toxicity

5-16



1 Fig.55.2 Example of Method 3 (Comparison of Exposure and Effects Distributions) based
2 on Effects Distribution 1a. This shows the probability that exposure values will exceed a
3 gpecified portion of the species sensitivity distribution using a reverse cumulative distribution.
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with the species sensitivity distribution.

100
90
80
70
60
50
40
30

Cumulative Probability Exposure

0

Fig. 5.5.4

Example of Method 3 (Comparison of Exposure and Effects Distributions) using
Effects Distribution 1b. The shading shows the area of overlap of the 90"percentile exposure
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Example of Method 3 (Comparison of Exposure and Effects Distributions) using

Effects Distribution 2. Error bounds (95% confidence intervals) around the dose-response are
shown by dashed lines.
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56  DISTRIBUTION-BASED QUOTIENTS (METHQOD 4)

In the Distribution-Based Quotient Method, each individual quotient represents aratio of
exposure to toxicity. The exposure and effects distributions are integrated using Monte Carlo
simulations to randomly sample values from distributions of exposure and toxicity to generate a
probabilistic distribution of quotients. Distributions of exposure and toxicity may be derived
from various sources. In the simplest form, uncertainty associated with point estimate values can
be incorporated by assigning distributions to the exposure and effects variables. In some
instances, adequate empirical data may be available to develop actual distributions for exposure
and effects. The output shows the probability of exposure exceeding effect thresholds.
However, the probability of a certain magnitude of effect occurring is unknown. Risk is
expressed from a probability distribution of quotient values, and the probability of the quotient
exceeding 1 or any other quotient value. For example, there is a 20% probability that exposure
levels exceed effect levels (based on a quotient of 1).

Two different examples of the Distribution-based Quotient methods were developed to reflect a
toxicity profile with multiple LDsp values (Effects distribution 1a) and another composed of a
single dose-response with uncertainty around the LDsg value (Effects distribution 2). The
exposure and toxicity data were each fitted to alog normal distribution (Fig. 5.6.1). Monte Carlo
methods were used to randomly sample from the distribution (10,000 smulations). The
assumptions used to generate probabilistic quotients are shown in Fig. 5.6.1. The resultant
probabilistic distribution from the simulation shows that there is a 90% probability that the
guotient will not exceed 1.0 (Figures 5.6.2 and 5.6.3), i.e. a 90% probability that exposure levels
will not exceed effect levels. Fig. 5.6.2 shows the results as a probability distribution whereas
Fig. 5.6.3 illustrates the results as a cumulative probability distribution. The risk statement must
be modified depending on what the distributions represent. Where the species sensitivity
distribution represents possible LDsg values for the focal species, and the lack of knowledge
concerning the sensitivity for the focal species, the output can be expressed as a 90% chance that
the sengitivity of the key species (as expressed by the median lethal dose) will be less than
estimated exposure levels (Figures 5.6.2 and 5.6.3).
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The output from the second example shows that there is 90% probability that the quotient value
will not exceed 0.65 (Figures 5.6.4 and 5.6.5). In this example, there is a 99% probability that
the quotient will not exceed 1.0. Specifically, where the distribution of LDsg' s represent the
error around the LDsg for the focal species, the model output can be expressed as a 99%
probability that exposure will be below levels that result in 50 % mortality of the population of
focal species.

Fig. 5.6.1 The individual distributions for exposure (graph 1) and toxicity (graphs 2 (Effects
Distribution 1) ) and 3 (Effects Distribution 2) ) used to generate Distribution-based Quotients
(Method 4). Plot 2 represents potential LDsp values for the focal species and therefore the
uncertainty (lack of knowledge) associated with estimating an L Dsg value for the focal species.
Plot 3 represents the uncertainty (model and measurement error) associated with the actual
estimated L D5 value for the focal species.

1. Distribution of Exposure

16.06 86.11 156.17 226.23 296.28
mg/kg/d
2. Distribution of LD50 values 3. Distribution of uncertainty around LD50

34.08 251.04 467.99 684.94 901.89 154.70 191.65 228.61 265.57 302.52

mg/kg/d mg/kg/d
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Fig. 5.6.2 An example of Distribution-based Quotients (Method 4) based on Effects
Distribution 1 which contains multiple LDsp valuesillustrated as a Discrete Probability plot. The
right arrow shows a quotient value of 1.0 (equal to the 90™% tile).
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Fig. 5.6.3 Distribution-based Quotients (Method 4) based on Effects Distribution 1
illustrated as a reverse cumulative probability plot or exceedance plot. The arrow on the x-axis
shows a quotient value of 1.0. Thereis a 10% probability of exceeding a quotient of 1.0.
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Fig.5.6.4 Distribution-based Quotients (Method 4) represented as a Discrete Probability
plot. Thisis based on Effects Distribution 3 which represents the distribution around the LDsg
from a single dose-response distribution. The right arrow shows the 90% probability level which
isequal to quotient value of approximately 0.65.
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Fig. 5.6.5 Distribution-based Quotients (Method 4) based on Effects Distribution 2
illustrated as a reverse cumulative probability plot or exceedance plot. The arrow on the x-axis
shows a quotient value of 0.65. Thereisa 10% probability of exceeding a quotient of 0.65.
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5.7 INTEGRATED EXPOSURE AND EFFECTSDISTRIBUTIONS (METHOD 5)

This risk assessment method uses a probabilistic distribution of exposure that may be generated
from the two basic exposure models i. Dietary moddl ii. Granule model. Generally, the
resulting risk may be expressed such that there is a probability that a certain magnitude of effect
will occur e.g., a 20% probability that 40% mortality will occur within a population. The
integrated exposure and effects method is applicable to risk assessments where data is available
to characterize the dose-response relationship for the focal species or the functional relationship
based on survivorship is described. Method 5 is similar to Distribution-Based Quotients
(Method 4) in that the exposure and effects distributions are integrated using Monte Carlo
simulations to sample from both distributions to provide an assessment of risk. However, in
Method 5 the quotient (in Method 4) is replaced with a mortality response function, therefore the
results of the risk assessment can be expressed as a probability of a certain magnitude of
mortality (or some other effect). Also, unlike risk assessment Methods 2 and 3, whererisk is
based on a probability of exceeding afixed effect level, the output is a probability associated
with a certain size of effect derived by “sampling” from the complete distributions for exposure
and effects. The probability that an effect occurs (e.g., mortality) is estimated by observing the
frequency of occurrence of the event in alarge population of similar individuals. Consequently,

Method 5 simulates both individual variability and parameter uncertainty whereas previously
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described risk assessment methods describe only parameter uncertainty. The dose-response
curve is essentially the cumulative distribution function (CDF) for the distribution of tolerances
of individuals to a pesticide. The CDF describes the variability in susceptibility of individuals
within a population, where F(t) is the proportion of individuals in the population with tolerance
lessthan or equal to t. For theindividual drawn at random, the probability of mortality is related
to the CDF by:

P(mortality to exposure dose d) = P (tolerance £ d) = F (d)

The response of an individual is dependent on the parameters of the CDF or dose-response (e.g.,
normal, probit, lognormal or logistic response curves) and these describe the probability of an
effect for an individua in relation to adose. For the probit model, tolerances follow alognormal
distribution and the proportion reacting will be related to the logarithm of the exposure dose by
the normal CDF. The logistic curve can aso be used to describe the probability of an effect. It
has a ssimilar shape to the normal CDF and may be preferred because it is simpler to interpret. In
al these models, each individual in the population has a tolerance to a dose and if the
susceptibility of the individual is less than the received dose then the individual will react. For
example, for a given dose and tolerance, an anima may die or survive (quantal response).

Two different approaches for simulating variability in response by individuals are described to
illustrate the Integrated Exposure and Effects Distributions risk assessment method: i. A dose-
response approach based on a distribution of tolerances ii. A survivorship approach.
A more detailed explanation of the derivation of the dose-response approach is described in
Chapter 4.0. Examples of the dose-response using the same exposure and effects distributions as
earlier risk assessment examples are used to demonstrate how different types of uncertainty
associated with the effects analysis can be considered within the risk assessment. In addition,
other risk assessment examples provided show how the different mortality response functions
described for Method 5 can be integrated with the various exposure analysis models devel oped
for dietary and granular ingestion and previously discussed in Chapter 3. Finally, an approach
that is based on survivorship or time-to-event is described where temporal consideration is given
to effects as data on individuals transitions over time. Mortality (or other effects) probability
distributions are based on specific times, ages or stages.
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5.7.1 Dose-Response Approach

The mortality response function in these examples is based on a dose-response approach where
the sengitivity of each individua is represented by a distribution of random tolerances. Three
different models with varying degrees of representation of uncertainty were developed (Table
5.7.1). Each isbased on the example distribution for exposure (Table 5.2.2) and the single dose-
response (Effects Distribution 2, Table 5.2.4) where an extrapolation factor may have been used
to estimate the median lethal dose for the focal species. Model 1 uses fixed values for the LDs
and slope of the dose-response. Models 2 and 3 use distributions to represent the LDso and lope
where uncertainty associated with interspecies and intraspecies variability can be represented. In
addition, model 3 incorporates a distribution to represent uncertainty associated with
extrapolation from the laboratory derived LDsg to the LDsg for the species of concern in the field.
This would account for uncertainty associated with the realism of the exposure simulated in the
laboratory for example, differences in inherent toxicity between field and laboratory populations
and variability resulting from increased stress in the laboratory affecting sensitivity.
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Table5.7.1 The assumptionsin the three examples for a dose-response approach based on
random tolerances for risk assessment Method 5 (Integrated Exposure and Effects Distributions).

Parameter Model 1 Model 2 Model 3

Dose Lognormal Lognormal Lognormal Distribution

(exposure) (D) | Distribution Distribution

LDso Fixed Value Normal Distribution | Normal Distribution

Slope Fixed Value Normal Distribution | Normal Distribution

Labto Field none none UF= 75% Probability

Extrapolation that the Field LDsg is

Uncertainty within 2X Lab LDsg

Factor (UF)

Number of 20 20 20

Individuals

Number of 500 500 500

simulations

Tolerance of T=LDsp*10%(z/dlope) | T= T=

each Individual | z=standard normal LDso* 107 (z/slope) (LDso* UF)* 10N (z/d ope)

(M distribution (mean=0, | z=standard normal z=standard normal
F=1) distribution (mean=0, | distribution (mean=0, F

F=1) =1)
Fate of Each if D>T then mortality | if D>T then mortality | if D>T then mortality
I ndividual if D<T then survival if D<T then survival | if D<T then surviva

In models 2 and 3, the error in the LDsp and slope estimates are represented by normal
distributions (Fig. 5.7.1). In this example, these distributions are not correlated, however, if
LDsp and slopeis correlated, this modification could be made. 1n model 3, the uncertainty factor
for extrapolation to the species of concern in the field was estimated by assuming the ratio of the
laboratory and field L Dsgs have alognormal distribution with median 1, implying that
underestimation and overestimation are equally probable. For illustrative purposes, the variance
of the distribution was calculated by assuming a 75% probability that field LDsg values would be
within afactor of 2 of the laboratory LDsy. The examples are based on the probit model (other
dose-response models could also be used) where tolerances are assumed to have alognormal
distribution and the logarithms of the tolerances have a mean of log(LDsp) and standard deviation
of 1/slope. This can be smplified using the equation:

Random Tolerance = LDsp* 10™(z/slope)

where z is arandom number from a standard normal distribution (mean=0, variance=1).
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The sample population in these examples has 20 individuals and 500 simulations were conducted
for each (Table 5.7.1). The mortality probability function is a quantal response, and for a given
dose and sengitivity, an individua either dies (where the tolerance of the individual is less than
the dose received) or survives.

The results of model 1, 2 and 3 assessments are expressed as a probability of a certain mortality
occurring in the sample population (Figs. 5.7.2, 5.7.3 and 5.7.4) and are illustrated as both
cumulative probability distributions and discrete probability distribution. For model 1 where
fixed values for the dose-response parameters were used, there is a 100% certainty that mortality
will not exceed 40% of the population. Thereis a12.4% probability that no mortality will occur
in the population and a certainty of 87.6% that 5 to 35% mortality will occur in the population
(Fig. 5.7.2). For Model 2 where dose-response parameters were variable, there is a 100%
certainty that mortality will not exceed 30% of the population. This model predicts no mortality
with a9.6% certainty and a 90.4% probability that 5 to 30% mortality will occur in the
population (Fig. 5.7.3). For Model 3 where dose-response parameters were variable and an
uncertainty factor for lab to field uncertainty was applied, there is a 100% certainty that mortality
will not exceed 60% of the population. In only 1% of casesis no mortality predicted and thereis
a99% probability that 5 to 60% mortality will occur in the population (Fig. 5.7.4). The
probability of mortality increases (distributions shift to the right) as uncertainty associated with
lab to field extrapolations is considered in the model (Model 3 compared to Model 1 and 2).

This results from uncertainty not explicit in Models 1 and 2 being quantified in Model 3. The
contribution of each source of uncertainty can be explored further in a sensitivity analysis.
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Fig.5.7.1 Assumptions for parameters characterizing the exposure distribution and dose-

response used in Models 2 and 3.
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Exposure Distribution
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Slope Distribution
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Lab LD50 Distribution
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1 Fig.5.7.2 Example outputs for Integrated Exposure and Effects (Method 5) based on a dose-
2 response approach with random tolerances and fixed values for dose-response parameters
3 (Modd 1). Thegraphs show reverse-CDF, CDF and discrete PDF respectively.
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Example outputs for Integrated Exposure and Effects (Method 5) based on a dose-
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Fig.5.7.4 Example outputs for Integrated Exposure and Effects (Method 5) based on a dose-
response approach with random tolerances, distributions for dose-response parameters and an
uncertainty factor for lab to field extrapolation (Model 3). The graphs show reverse-CDF, CDF
and discrete PDF respectively.
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The simulations provided in the examples above require that a certain number of individuals (n)
be specified. It should be noted that when the number of individuals is increased beyond a
certain threshold that sampling variability may be essentially eliminated as a source of variation
among simulated populations. In this case, mortality can be generated directly from the dose-

response without the use of the random mortality component (see Appendix D1).

The Pesticide Agro-eco Risk Evaluation Tool (PARET) is arisk assessment model under
development that uses the dose-response approach based on a random distribution of tolerances
(Appendix A2). PARET assesses the risk posed by the use of a pesticide using asimple
comparison of exposure and effect on an individual basis. Development of PARET to date has
been based on the dietary exposure model including pesticide intake through drinking water
(Chapter 3). Random number generators are used to select application dates within an
application window. Distributions are used to describe exposure in a spatially and temporally
variable agro-ecosystem with temporal variability built into the model in adaily time-step. A
grid-based approach is used to represent treated and treated fields on which an animal may move
at random (not behavior specific). The number of fields on which an individual feedsisa
function of the median size of field in the local arearelative to the local range of that species.
Effects are assessed using the parameters of the dose-response and by assuming a random
distribution of tolerances. The model does not account for depuration of body burden. For each
individual the exposure is compared to the effect level and depending on whether exposure levels
exceed effect levels, the individual is counted as dead, reproductively impaired or alive.

5-34



o o~ W N P

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

A further variation of the dose-response approach is described below. Asfor the previous
example, for a given dose and tolerance, an anima may die or survive. The functional
relationship is described by the CDF of a standard normal distribution, however, the tolerances
do not follow a hypothetical random distribution as in the previous examples. For the probit
model, the CDF for the probability of mortality at exposure dose d can be described as follows:

F(d) = F (slope*logio (d / LDsp))

The logistic curve can aso be used to describe the probability of an effect and an example of this
approach is the individual-based risk assessment model described in Appendix A3. In this
model, pesticide ingestion and mortality in avian species is used to link pesticide exposure
concentrations to predict mortality on populations of avian species with different feeding habits
associated with agricultural fields. The model consists of two partsi. a calculation of the body
concentration, or dose, for each individual in the population, and ii. a calculation of the
probability of mortality of many individuals of a given speciesin a population. Each component
of the model is stochastic. Random variables include the ingestion rate of granules, pesticide
residues in other diet components, and the probability of mortality. The proportion of consumed
food items with pesticide residues will depend on the relative time spent in treated areas
compared to untreated areas. Each individual accumulates pesticide over time and primary
mechanisms for reducing body burdens are excretion and metabolism of absorbed pesticide. The
probability of mortality occurring in an individual is determined by a dose-response function in
which mortality probability is alogistic function of dose or body concentration. The quantal
response is determined using a random number generator. This model uses the following form
of the logistic function:

F(d)= P/ (1 +eM(2.2/P3)(P-d)] )

where F(d)=probability of mortality at dose d; P;=maximum probability of mortality; P,=L Dso;
Ps=difference between LD and L Dsp; d= dose or body concentration.

A further variation of this dose-response approach based on non-random tolerances provides an
approximation of the cumulative standard normal distribution. An example of arisk assessment
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based on this mortality response function provides an assessment of the effects of the insecticide
chlorpyrifos on blue titsin orchards in the U.K. ( Appendix C10).
5.7.2 Qurvivorship (or time-to-event) Models

Survivorship models have potential application to ecological risk assessment for example the
“Hazard Analysis’ method described by Caswell and John (1992). Unlike the majority of
integrated risk assessment examples as presented above, survivorship or time-to-event- models
give temporal consideration to effects. Survivorship models yield estimates of population level
transition rates, estimated from event history data on individuals and could be useful in
estimating the probability of mortality under a number of exposure or risk scenarios. They
therefore provide an opportunity to improve utilization of information on times or ages of death
of individuals, or generation of predictions with atime dimension (e.g., asin life tables). For
example, Hazard analysis uses individual-based modeling to estimate rates or probabilities of
parameters such as survival, reproduction, or mortality where the data consist of individual
transitions over time (e.g., the dependent variable may be monthly rate of mortality). Hazard
Analysisis essentially aregression model where the dependent variable is the rate at which the
transition (the hazard) occurs. The method can incorporate censored data (i.e., data in which the
fate of some individualsis not observed), such as the probability f(t) of an event happening at
time t and the cumulative probability F(t) of the event happening before time t to derive the
hazard function f(t)/[ 1-F(t)], which gives the risk of an event occurring at timet, given that it has
not yet occurred.

In simple situations such as construction of life tables, the methods may involve obvious
calculations involving age- or time-specific mortality rates. For example IBMOD (see Appendix
E1) , an individual-based growth model, uses probabilities for fecundity and survival on each
individual in separate age classes (similar to a Leslie-matrix type population model). The
fecundity probabilities form a cumulative probability distribution used to create a specific
number of off-spring per individual. IBMOD tracks off-spring numbers and survival by sex and
age class and will simulate growth of a population over time.

58 MECHANISTIC (PROCESS) MODELS FOR POPULATION EFFECTS (METHOD
6)
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Part of the charge to ECOFRAM was to develop methods for ecological risk assessment that are
based on risks to populations where both spatial and temporal scales are considered. There are
several types of models that are applicable to estimating the risk of pesticides to populations of
non-target organisms (Barnthouse, 1996) that may fulfill this remit. These include models that
are individual-based, stage/age structured, meta populations or spatially explicit landscape
models. A summary of the advantages and disadvantages of these approaches for probabilistic
risk assessment is shown in Table 5.8.1. Like risk assessment Method 5 above, these models
integrate exposure and effects distributions to provide arisk estimation. However, unlike the
distribution-based methods discussed above, these models are more sophisticated and include
mathematical expressions that represent the various mechanisms in the system under evaluation.
Mechanistic models can be used to characterize the abundance and/or persistence of populations
and can characterize the spatial and temporal characteristics of effects. Each model may be more
specific to certain species and/or scenario in comparison to the more generalized distribution
approaches. Consequently, reference data sets for representative species associated with certain
agricultural ecosystems where pesticides are used may be necessary. The extent of use of the
pesticide and persistence, and how this affects the rate of recovery of exposed populations may
also be considered. These models, due to their increased realism, may imply a higher level of
certainty in comparison to earlier methods, however, to surmise this may not always be

appropriate, and careful consideration should be given to underlying assumptions in the model.

Population level effects are traditionally modeled by treating all individuals as genetically,
morphologically, and physiologically equal. Different age groups, sexes, body size classes, and
even individuals can react differently to exposure to a toxicant. The development of probabilistic
risk assessment approaches will explore several approaches for the modeling of population level
effects. There are several excellent summaries of the approaches discussed below (DeAngelis
and Gross, 1992; Emlen, 1984; Engen, 1978; Freedman, 1980; Gutierrez, 1996).

Population models are available and many could potentially be modified for use in ecological
risk assessment. However it should be noted that a magjor limitation in the use and devel opment
of these models is an absence of adequate data. Given this, it was concluded by ECOFRAM that

the use of these models should be a longer-term objective.
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5.8.1 AgeClass Sructured

Grouping individuals by age and sex can provide much better estimates of population growth;
combining this approach with estimates of differential toxicity will greatly improve risk
projections. Models are available that allow for either discrete generations (e.g. the Ledlie
Matrix) or continuous reproduction (e.g. McKendrick-VonFoerster or distribution delay models).
The major advantages of age-class structured models are their relative ssmplicity, especially in
discrete models, and the ability to segregate exposure or risk by age. Research has shown that
post-exposure mortality is often age dependent. The disadvantages of this approach relate to the
difficulty of obtaining reliable field derived vital rates as inputs to the modeling process. In
addition, vital rates are species specific and vary intra-specifically across habitats, and even with
the range of a speciesin a single habitat. Finally, age is not aways easy to determine in the field
adding to inaccuracy in the population projections derived by the models. Major challenges will

include collecting vital rates for age and sex classes for the wide array of species under risk.

5.8.2 Sage And Sze Structured

Individuals of different body sizes can be differentially susceptible to exposure to environmental
contaminants. Several matrix-based procedures, such as Lefkovitch stage-classified models,
allow exposure and risk to be partitioned among life-stage or body size classes (e.g., Caswell,
1989; Slade, 1994). These matrix models have the advantage that they are relatively smple and
do not require ages of organisms. It is only necessary to be able to define the life-cycle stages or
sizes of the organisms. The disadvantages are similar to age-class structured models; life-cycle or
size specific vital rates are difficult to obtain under field situations and these rates will vary in
space and time. Even accurately obtained, expected values lack estimates of variability in the
wild. The incorporation of estimates of levels of environmental stochasticity also isamajor
challenge.

5.8.3 Composite Age And Sze Structured

There are several models that combine age and size structured data in developing popul ation
projections. They include discrete (Slobodkins model) and continuous (Sinko-Streifer equation)
forms. Advantages include the capability to consider size differences within ages and relative
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simplicity of the models. The disadvantages are a composite of those of age and stage structured
matrix approaches. Vital rates must now be obtained or estimated for ages and sizes within ages.
Again, these rates will vary in space and time, and age must be determined under field conditions

with precision.

All of the above matrix-based models can be modified to include density dependence, stochastic
variation, and contaminant-induced impacts. Sensitivity analyses can be run on any of the
parameters in the model. However, al are aggregate models to some degree and assume that all
individuals in a particular class are behaviorally, morphologically, and physiologically identical.
In many cases, this assumption is violated, however, there is a class of models that allows for the
incorporation of individual differences.

5.8.4 Individual-based

Individual-based models simulate large numbers of individual organisms at various life stages
with explicit consideration of foraging and predation, physiology, behavior, and/or
pharmacodynamics. Individual-based models may aso be called physiologically-based models,
where they focus on physiological differences among individuals in exposure and response.
Historically, these models have been applied ailmost exclusively to aguatic systems. Individual-
based models hold great heuristic promise, however, they often require extensive data on
individuals in order to characterize the dynamics of a population of individuals with
consideration of physiology, behavior and pharmacodynamics at various life stages.
Individual-based models possess the following advantages:

They recognize the reality of individual variation in morphology, behavior and

physiology.

Thereis, in principle, no loss of biologically important information.

The responses of interest can be determined under controlled laboratory or field

conditions (to a degree).

These models can be modified to include spatial dependence.
Disadvantages of individual-based models include:

A dependence upon biological data on individual organisms.

The fact that these models are computationally intense.

A history of application primarily in aquatic toxicology.
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The great attraction of individual-based modeling approaches is the ability to incorporate
physiological, behavioral, competitive, and habitat differences, all of which are known to
influence exposure and risk under field situations.

5.85 Satially Structured Populations

In the Problem Formulation stage of the risk assessment the population structure and spatial scale
of the risk assessment should be determined. Examples of risk assessment methods described in
earlier sections assume that a single population is being exposed to a particular distribution of
exposure. As methods become further developed it may be necessary to link several different
exposure scenarios to spatialy separate subpopulations. The exposure may vary within and/or
among subpopulations. This concept is described in detail in Appendix C1. Inredlity

popul ations are exposed to environmental contaminants distributed unequally across the
landscape. Agricultural fields will contain more pesticides, for example, than surrounding
woodland. It will be important to include information on the density and reproductive output of
species in different habitats as well as the different levels of exposure in these habitats. This
information should be included in a variation of source-sink modeling. A specific expression of
source-sink modelsis that of the meta-population (Pulliam, 1994). A meta-population represents
agroup of geographically separated subpopulations of a species where each patch is separated
from others by unsuitable habitat. Some of the subpopulations can be sources and others sinks.
The degree of migration among subpopul ations can be modeled. The meta-population modeling
approach can incorporate information on which patches are likely to be exposed to contaminants
and which are distant from agricultural areas.

Spatially explicit risk models can be developed either in matrix-based aggregate models or
individual-based approaches. Data inputs can be life-history data specific to each habitat and
images of the habitat mosaic derived from some remote sensing approach (aeria photos, satellite
imagery). Many spatial database software packages can develop a number of estimates of risk
based upon these inputs. The advantages are that the results are site and species specific, locally
relevant, and not data-input intensive. The major disadvantages include the lack of generality of
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Table5.8.1

Strengths and Weaknesses of Mechanistic Models for Probabilistic Risk Assessment (Method 6)

5-42

Section | Type Description Strengths W eaknesses
5.8.1, - Stage/age- | - demographic - causal mechanisms given - define population (statistical vs
5.8.2, structured - behavior of population | - direct link to lifecycle toxicity data | ecologically relevant)
5.8.3 - effects at different ages | (if available) -difficult to obtain vital rate input
or life-stages related to - existing models for resource information
overall population effects | management could be modified - multiple species
- modification for probabilistic - spatialy homogeneous
expression of risk - unable to link to spatial & temporal
- include predicted or observed variation in exposure
effects on populations - steady state
- could use reference data sets for -data intensive
species of interest and their habitats | -increasing complexity resulting in
- long-term exposure and effects increasing propagation of error
5.84 Individual- | -Model large numbers of | -to warrant the effort consider use -focus on single species
based individual organismsat | where specia review, specific -considerable effort to provide detailed
various life stages with concern for organism at a high individual data
consideration of foraging | trophic level, large body size and
and predation, longevity
physiology, behavior, -dynamic
pharmacodynamics -focus on benchmark popln.
-easy to extend individual based
information to population level
study
-input data most readily accessible
or easly obtainable
5.85 - Meta- -set of subpopulations -may be useful to evaluate specific | -dataintensive
population -linked by immigration problem -increasing complexity resulting in
and emigration following | -habitat considerations could be increasing propagation of error
local extinction of linked to pesticide use areas (ag -determining size of Astudy@ area




species within

ecosystems)

-in part site specific

subpopulation -able to incorporate important
gpatial information giving high
realism
5.8.6 - Landscape/ | -simulation of -improved link to exposure -too specific to be generally applicable
gpatially interactions between mitigation -spatial representation of stressor and
explicit organisms and -spatial & temporal description of receptor
landscapes risk -data intensive

-GI S software accessible and
inexpensive
-high realism

-increasing complexity resulting in
increasing propagation of error
-determining size of Astudy@ area
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59 FURTHER TESTING AND SELECTION OF METHODS

Severa methods for risk characterization were identified by ECOFRAM. Some of these
methods may be very similar in function and possibly redundant. The final process
implemented for terrestrial ecological risk assessment should focus only on those
methods that are most useful in aregulatory risk assessment framework. To achieve this,
further evaluation of these methods using case studies is necessary to ascertain
redundancy in the proposed methods (see Chapter 7.0). This evaluation is necessary to
refine the process for risk assessment. Risk assessment methods must be suitable to use
in aregulatory context and therefore must be adequately calibrated and validated. An
evaluation of methods proposed by ECOFRAM in case studies should consider several
criteria

Estimated costs and benefits

Description of the probabilistic components and expression of risk

Development of case scenario examples that rigorously test the methods

Directly address assessment endpoints of regulatory significance

Easy link to probabilistic distributions of exposure and easy incorporation of

appropriate toxicity data

Consideration of utility within atiered regulatory process

Timing of exposure for pesticides needs to be accurately reflected

(particularly where aminimal number of applications and minimal persistence

will result in a greater probability of not coinciding with a critical biological

event).

Need to understand significance of effects of a perturbation compared to

stochastic variability

Expect to make predictions based on incomplete information and therefore

need to be able to assess the uncertainty

Model error may be a mgor contributor to overall uncertainty and difficult to

measure

Ease of use in aregulatory context where consistency in requirements for

refining assessments may be essential
5-44
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In models that use populations of individual organisms, the risk
characterization needs to consider differences between the collective statistical
population used in the model as oppose to the actual population being risk
assessed
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6.0 LEVELSOF REFINEMENT FOR THE ASSESSMENT PROCESS

6.1  Objective

Terrestrial ECOFRAM has identified awide variety of possible tools and processes for
exposure and effects analysis, and risk characterization. Alternative methods are
necessary to provide the flexibility to manage a diversity of pesticide risk assessment
scenarios, where different degrees of refinement may be required in order to achieve an
adequate understanding of risk. However, in order to be useful within aregulatory
framework, these methods need to be organized within an overal, streamlined process
that allows efficiency and transparency in conducting regulatory terrestrial risk
assessments. As stated in the charge to ECOFRAM, procedures for risk assessment need
to be standardized and specific enough to allow different assessors supplied with the
same information to produce similar estimates of risk (which is essential for the
credibility of the assessment). In fact, the tools and processes discussed in this report are
in their infancy, so it would be premature to attempt to standardize them at this stage.
Therefore, the objectives of this chapter are to:
Consider how the principle of Levels of Refinement (developed in earlier chapters)
can be applied to the risk assessment as a whole.
Consider the relative advantages of rigid and flexible assessment procedures.
Explore ways of deciding how far to refine assessments and how they might work in
practice.

Consider what steps can be taken towards devel oping more standardized procedures.

6.2 Levesof refinement for the assessment components

At the end of each preceding chapter, the various tools and processes devel oped by

ECOFRAM have been organized into four different levels of refinement. Table 6.2-1
summarises the methods at each level of refinement, and attemptsto illustrate the
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integration of exposure analysis, effects analysis and risk characterization to form the

basis of arisk assessment process.

Table 6.2-1 Overview of Levels of Refinement for ecological risk assessment
Level | Level Il Level I1 Level IV
Spatial Treated Field Treated Fidld & Treated Field, Non- Landscape
PT=1 Non-target areas target areas & Drift -clumping
PT<1 Zone -explicit sizes
PT<1 - pesticide market
Unit Time short-term= minutes, hours Effects assessment adjusted to pattern of
medium-term= hours, days exposure over time
long-term = weeks
Species of generic generic/focal focal
Concern
Use Pattern label maximum label maximum label maximum
typical/distribution
Crop generic linked to focal species linked to focal
generic Species
individual crop
individual region
Exposure short-term: short-term: improved improved
Output conservative distributions for distributions (more distributions (more
single bout size of single- data) data)
exposure bout dose, plus consideration of field data on
medium-long frequency of drift zones focal species
term: peak daily single-bout distributions consideration of
dose & time- exposures replacing fixed landscape factors
weighted average medium-long defaults for in spatially explicit
(TWA, mg/kg/d) term: parameters models
distributions of consider additional
daily dose, & mechanisms, e.g.
distribution of avoidance
TWA
Effects Short: 1 LDgy dose- | Short: 2-3 LDgg * Short: 4+ LDsy * EF Field options but only
Output response * EF EF Medium:>1 LDsxg in combination with
Medium: as for Medium: 1 LD concentration-response | exposure assessments
short-term concentration- * EF
Long:2 NOELSfor | response* EF Long: refinement of
Reproduction Long: refinement of | NOEL
NOEL
Risk Deterministic Short: methods 2-5 as appropriate
Characteriz- | Quotients Medium: methods 2-5 as appropriate
ation or Method 2 Long: method 2
Method
Risk Quotient Probability distribution specific to method selected
Characteriz- | or Method 2

ation Output
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Thislogical progression of methods provides the basis for a process for refining exposure
and effects analysis, and risk characterization. Early levels within the process have
greater simplicity and conservative assumptions moving towards more realistic estimates
of risk at later stages. However, the Levels of Refinement are intended to be used in a
flexible manner, so that at any stage of the assessment different elements may be assessed
at different Levels of Refinement (see later for elaboration of thisimportant issue). The

four levels of refinement may be characterized as follows:

Leve 1 isdesigned to provide a protective screening assessment, and is therefore not
predictive of actual risk. Consequently, conservative assumptions are made at this Level
for many parameters. For example, animals are assumed to feed only in the treated field,
following application of a pesticide at maximum label rates. The assessment is typically
based on a conservative scenario (i.e. tending towards the worst case), in which crops and
species are represented generically. Toxicity data may be limited at thislevel and a
conservative uncertainty factor is applied to compensate for this uncertainty. Level 1isa
deterministic analysis that culminates in the calculation of a quotient. The objectives of
the Level 1 assessment are to:

Identify products that have minimal ecological concern even under a conservative

exposure and effects scenario.

|dentify sensitive taxa (birds or mammals, types of birds or mammals) for further

risk assessment refinements.

Determine whether acute and/or chronic effects are of concern.

|dentify use patterns, crop scenarios, or formulations of products of environmental

significance that require further risk assessment refinements.

The objectives of ECOFRAM are to move away from deterministic quotients because
they do not provide information on the probability and magnitude of effects. At this
stage, deterministic quotients have not yet been dismissed and feature as the risk
assessment method in Level 1, for the following reasons:
Quotients may serve as an interim measure that provides a bridge for risk
assessors and risk managers between current and new probabilistic risk

assessment methods.
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Quotients remain a primary method within the aquatic ECOFRAM proposal
and may continue to be used by EPA risk managers.
Terrestrial ECOFRAM has not yet conducted case studies to further evaluate
proposed risk characterization methods therefore it is premature to eliminate
deterministic quotients. Quotients may also play arolein future evaluations
by providing a benchmark to which new methods could be compared.
Further evaluation of risk characterization methods and further development
of aLevels of Refinement process may demonstrate that quotients serve a
useful purpose in scoping the risk assessment and identification of scenarios
of concern (e.g., during the Problem Formulation stage). On the other hand, it
may be demonstrated that quotients are redundant.

However, simple probabilistic methods of risk characterization (e.g. Method 2) are also

feasiblein Level 1 and may allow decisions about the need for refined assessment to be

made in a manner consistent with higher levels of the process (see | ater).

Level 2 isdesigned to be protective but also introduces greater realism into the
assessment by substituting some conservative estimates with more realistic values, and
deterministic values with distributions. For instance, the exposure assessment may
explore more realistic estimates of the portion of time that a non-target animal residesin
the treated field. The Level 2 assessment could be based on either generic species or the
focal species associated with the target use of the product. The uncertainty in the effects
assessment is decreased by using additional toxicity data and more accurate estimates of
dose. The resulting risk assessment is based on probabilistic distributions generated from
Methods 2 through 5. The risk assessment for reproductive effectsis limited to Method 2
due to the constraints of the current test design (a comparison of the exposure distribution
with a point estimate for effects).

Level 3issimilar to Level 2 but incorporates greater biological realism resulting from
improved distributions (e.g. empirical or statistically-fitted distributions) and considering
additional parameters in the exposure assessment. The effects estimate is refined by
testing additional species, and specialised tests may be used (here or at Level 4) to

guantify avoidance behavior. Flexibility isintroduced for customizing the exposure
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regime in toxicity tests.

The resulting risk assessment is based on probabilistic

distributions as described for Level 2.

Level 4 isthe highest level of refinement and considers landscape factorsin spatially

explicit exposure models and consequently the risk assessment may be crop and

regionally specific. Improvements to distributions for exposure and effects may involve

focused field studies that provide more accurate measurements of key parameters. The

resulting risk assessment is based on probabilistic distributions as described for Levels 2

and 3.

6.3 LEVELS OF REFINEMENT FOR THE OVERALL ASSESSMENT

A consequence of the flexible approach advocated by the Workgroup is that most

completed assessments will include elements at more than one Level of Refinement.

However, users are likely to want to describe the overall level of their assessments

without having to refer to the Levels of all the component parts. It is possible to

categorise the overall assessment in broad terms so, to avoid confusion, the following

descriptions are offered:

Level 1 Assessment

Entirely deterministic assessment. All inputs and outputs are point
estimates, although some inputs may be ‘worst case’ values drawn
from a distribution (e.g. 95 percentiles).

Level 2 Assessment

At least one input and the output are in the form of distributions, but
the input distributions are al hypothetical or generic (i.e. not specific
to the pesticide and scenario in question), and may be based on
relatively limited information (e.g. means and standard deviations
available from the scientific literature).

Level 3 Assessment

At least one input and the output are in the form of distributions.
Input distributions are generally not specific to the pesticide and
scenario in question, but are likely to include statistically-fitted
distributions and/or empirical distributions. Likely to use more
distributions than at Level 2 and consider additional parameters.

Level 4 Assessment

At least one input and the output are in the form of distributions,
with at least one input distribution being specific to the pesticide and
scenario in question (e.g. derived from field studies or non-standard
effects studies). May use a spatially-explicit model.

For the overall assessment, the Level of Refinement refers to the extent that biological realism, risk and
uncertainty are incorporated in the risk characterization and how well actual risk is described. Level 1is
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suitable for screening purposes, and information is not provided on the probability of a
certain magnitude of effect occurring. The purpose of higher levelsisto address
additional data needs, reduce uncertainty in the risk characterization, and reduce the need
for the use of conservative assumptions. Consequently, more explicit information on
risk, and improvements in the prediction of actual risk will occur at increasingly higher
levels. In general the progression from lower to higher levels of refinement is based on:

Point estimates for parameters in the exposure assessment are replaced with

distributions.

Additional parameters in the exposure model are considered.

Increased spatial realism. Both treated and untreated habitat are considered.

An improved estimate of mg/kg/b.w. per unit time for test animals.

Number of speciestested isincreased.

Pattern of exposure in toxicity test is refined.

Increased realism in the risk assessment.

More uncertainty is explicitly considered in the analysis.

Decreased uncertainty in the estimate of actual risk.

Increased understanding of risk, and increased credibility of the assessment.

Each refinement of the assessment should be preceded by areview of the Problem
Formulation. The measurement endpoints employed may change as the risk assessment
progresses through higher levels. Assessment endpoints, however, remain unchanged as
the assessment is refined, although some assessment endpoints may be adequately
addressed at lower Levels and not require as much refinement as others.

As experience is accumulated it may be possible to define more standardized sets of
parameters, distributions and modelsto use at each Level, for particular types of pesticide
(e.g. granulars vs. foliar sprays vs. seed treatments). Cooperative case studies would be a
good way to start identifying these (see later).

6.4 Levelsversustiers

Traditional approaches to pesticide eco-risk assessment have tended to be organised in
hierarchical frameworks, in order to focus assessment resources on the pesticides and
impacts of most concern. The levels in these frameworks have often been called Tiers.
Tiers have been used simultaneously to classify the tools for risk assessment (particular
types of study are done in specific Tiers) and define the process for risk assessment (a
step-wise progression from lower to higher Tiers, triggered by levels of concern). They
have also tended to be rather rigid, although thisis not aways the case (the Aquatic
ECOFRAM has defined a Tiered process but emphasizes that the Tiers are flexible). An
extreme example might proceed as follows:

conduct all studiesin Tier 1

conduct risk characterization

if risk unacceptable, proceed to Tier 2

conduct all studiesin Tier 2

repeat risk characterization... and so on.

grODNE

This has the advantage of transparency but is very unlikely to be efficient. Usually, only
some of the studies within a Tier will be realy necessary for the risk manager’s decision
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to be made. So if the Tiers are applied rigidly to every pesticide, many studies may be
conducted and evaluated unnecessarily.

It has been stated many times in this report that the Terrestrial Workgroup regards the
Levels of Refinement as flexible. Specifically,
in a completed assessment, some components may have been refined to a higher
Level than others
there is no requirement to refine every component to one Level before proceeding to
the next.
Furthermore, the Workgroup does not regard the assignment of methodsto Levelsin this
report as definitive: further development and experience might suggest modifications (see
later). It is partly to avoid the traditional expectation of rigidity, that the term ‘Levels of
Refinement’ is preferred to ‘Tiers'.
The issue of flexibility versusrigidity is not atrivial one. As the charge to ECOFRAM
implied, consistency between risk assessors is important, and different assessors are more
likely to produce the same estimate of risk if procedures are standardized. Thisis
particularly true when they are faced with new approaches, and with the wide variety of
possible tools and processes identified in this report.

This diversity of options raises two key questions:
how far to refine the assessment?
which parameters to refine?

These questions are important. Without answers, it will not be known which parts of the
risk assessment to refine, nor when to stop. This would lead to unnecessarily complex
risk assessments, and inefficient use of resources for both regulator and registrant. Rigid
Tiers and triggers are designed to help the risk assessor answer these questions. Rigid
Tiers and triggers also provide transparency for the registrants, making it easier for them
to anticipate what studies will be required and plan product development. It is therefore
important to consider whether more flexible procedures can also provide efficient
answers to these questions.

6.5 How far to refine the assessment ?

The purpose of risk assessment is to enable EPA risk managers to decide if the risk from
aparticular pesticide use is acceptable or requires mitigation. The assessment therefore
needs to be refined to the point where the actual risk is known with sufficient certainty
for risk managers to decide which side of the threshold of acceptability it lies.

The closer the actual risk isto the threshold of acceptability, the more precision is
required in the risk assessment to enable a decision to be made. To put it another way, the
closer the actual risk isto the threshold of acceptability, the more refined the assessment
needs to be to provide sufficient understanding and credibility for the risk manager to
make a decision. Consequently, the degree of refinement required depends on how close
the actual risk is to the threshold of acceptability. This concept isillustrated in Figure
6.5-1.
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The Workgroup recognizes that the concept of athreshold of acceptability isasensitive
issue. However, the fact that risk management decisions are made implies that thresholds
exist, even if they are never explicit.

Figure 6.5-1 shows that, if the threshold of acceptability is not defined, it is very difficult
to decide how far to refine the assessment. Even if the position of the threshold is known,
it may vary from case to case depending on the balance between risk and benefit.
Nevertheless, if the actual risk is much higher than the acceptable level, or much lower,
this may be apparent from avery simple initial assessment. A risk prediction with a high
level of uncertainty may be sufficiently far from the threshold that a decision can be
made with adequate certainty.

6.6  Which partsof the assessment to refine ?

Comparison with the acceptability threshold provides the key to deciding how far to
refine the assessment. For example,
If theinitial prediction of risk isfar enough below the threshold, further refinement
may be unnecessary.
If theinitial prediction of risk is close to the threshold, further refinement islikely to
be essential.
If theinitial prediction of risk isfar enough above the threshold, then it may be more
cost-effective to look for mitigation methods than to invest in refining the assessment.
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Figure 6.5-1. The closer the actual risk is to the threshold of acceptability, the more the
assessment has to be refined for the risk manager’ s decision to be taken with adequate
certainty. The threshold is shown as a broad band rather than aline, because its position
can vary from case to case and may never be defined precisaly.
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If it is decided to progress beyond the initial assessment, the next question is which of the
assessment parameters to refine. An efficient approach would identify those refinements
which will achieve adequate certainty in a given assessment with the minimum cost in
time and money. At any point in the assessment, all the parameters will have been
addressed at some Level of Refinement. To decide which parameter(s) to refine:

1. assess how much uncertainty will be reduced by refining each parameter

2. assess how much each will cost in time, money etc.

3. choose the most cost-effective option or set of options.

The selected options would then be implemented in the next phase of assessment,
producing arefined estimate of risk. If it was concluded that there was still too much
uncertainty, then the cycle could be repeated to identify options for a further phase of
refinement. Thus the overall process would be an iterative refinement of the assessment
which would stop when the result was sufficiently certain for the risk manager’s decision
to be made (Figure 6.6-1).

Note that risk mitigation options could also be considered at any stage in the process, if
the earlier results suggested that the result of refining the risk was likely to be
unacceptable. Thisisasoillustrated in Figure 6.6-1.

Note also that this process can be applied equally to the registration of new pesticides and
re-registration of existing pesticides. For new pesticides, one will probably start with the
lowest level of refinement for every parameter. For older pesticides, the process may start
at higher levels, if the necessary data already exist.
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1  Figure 6.6-1. Possible iterative approach to refining the risk assessment, so asto provide the information
2 required for the risk manager’ s decision with the minimum cost and effort. The shaded box represents the
3 decision to be taken by the risk manager. Other boxes represent actions by the risk assessor.
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6.7 MAGNITUDE AND PROBABILITY OF EFFECTS

Figures 6.5-1 and 6.6-1 imply that the flexible assessment process will involve a series of
comparisons between a distribution of predicted risk and a threshold of acceptability. For
convenience, the discussion so far has referred to risk and the threshold in simple terms.
In practice, as indicated by the charge to ECOFRAM, the assessment should predict both
the magnitude and probability of effects. The threshold of acceptability therefore needs to
be defined in terms of magnitude and probability as well.

For example, if the assessment endpoint is mortality, the threshold of acceptability might
be, say, a 5% chance of 5% mortality for the focal species. At community level, a5%
chance of more than 5% of species suffering more than 5% mortality might be
unacceptable. It is emphasized that the percentages chosen for these and the following
examples are purely illustrative: in practice they would be determined by the risk
manager, taking account of many factors. In the past thresholds have not been expressed
in thisway, perhaps because adequate tools to quantify risk in these terms were lacking.

The thresholds of acceptability for the probability and magnitude of effects will generally
be interdependent. For example, if a 5% chance of 5% mortality was acceptable, 10%
mortality might be acceptable at alower level of probability. If the probability and
magnitude of effects are plotted on a graph, then aline could be drawn to join the points
marking the threshold of acceptable risk (a similar representation has been used by the
Aquatic ECOFRAM). In practice, it isunlikely to be realistic to define the threshold
precisely, so it may be more appropriately represented by a broad band than aline (Figure
6.7-1a).

Predicted risk can also be characterized in terms of magnitude and probability, using
Methods 2-5 in Chapter 5. These can be plotted as an exceedance curve (Figure 6.7-1b).
Plotting this on the same graph as the acceptability threshold enables a direct comparison
(Figure 6.7-1c).
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Figure 6.7-1. (a) Graphical representation of the risk manager’s threshold of
acceptability in terms of the probability and magnitude of effects. The threshold is shown
as a broad band rather than a line, because its position can vary from case to case and
may never be defined precisely. (b) Graphical representation of risk assessor’s prediction
as an exceedance curve, showing the probability that the magnitude of the effect exceeds
each point on the horizontal axis. (¢) Comparison of predicted risk with acceptability
threshold. Areas where the prediction exceeds the threshold indicate potentially
unacceptable risk.
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At any point in the risk assessment, this comparison between predicted risk and
acceptability threshold can help decide how to proceed. For example:

If the whole of the exceedance curve is well below the threshold, therisk islikely to
be acceptable and further refinement may not be required (Figure 6.7-2a).

If the whole of the exceedance curve is well above the threshold, the risk is likely to
be unacceptable and no further refinement is required (Figure 6.7-2b).

If only the bottom tail of the curve exceeds the threshold (Figure 6.7-2c), refinements
which reduce the variance of the predicted risk may be sufficient to achieve an
acceptable outcome. For example, reducing measurement error in exposure parameters,
or conducting effects tests with additional species to decrease the variance of the mean
LD50.

If the median of the curve exceeds the threshold, refinements which move the median
to the left (lower risk) will be necessary (Figure 6.7-2d). Replacing ‘ worst-case’
assumptions with real distributions is the most effective way of doing this, even though
it will increase the variance of predicted risk. For example, replacing ‘ maximum'’
residues with a measured distribution, or using a distribution for PT instead of setting it
to 1. Alternatively, the median can be moved to the left by risk mitigation measures.

In the last 2 categories, it may not be obvious which variable it is best to refine. Perhaps
the most practical way to decide is to use expert judgement to guess the effects of each
possible refinement, and then use sensitivity analysis to compare their effects on the
assessment outcome. For example, before deciding to quantify PT (the proportion of time
spent in the treated area) by radio-tracking, one might define a hypothetical best-case
distribution for PT. If including this in the assessment was not enough to reduce the risk
below threshold, one would hesitate to proceed with radio-tracking. This combination of
expert judgement and sensitivity analysis should be a powerful way to optimize the
refinement of the assessment.
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Figure 6.7-2. Comparison of the distribution of predicted risk with athreshold of
acceptability could help decide how to proceed with the assessment. Here percent
mortality is used as an example of an assessment endpoint, and the curve shows the
uncertainty in the predicted mortality: (a) low probability of exceeding threshold — risk
acceptable? (b) low probability of being below threshold — consider mitigation? (c)
variation too great for adequate certainty whether risk exceeds threshold — reducing
measurement error may be sufficient; (d) curves overlap but median risk exceeds
threshold — may need to replace worst-case assumptions with distributions or consider
risk mitigation.
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This approach can also be used for a preliminary, ‘screening’ assessment. The magnitude
of the effect for a specified level of exposure can be estimated from a single dose-
response curve. The probability is unlikely to be quantified but will be very low, because
the exposure assessment will incorporate ‘worst-case’ assumptions and a conservative
extrapolation factor may have been applied to the effects data. The predicted magnitude
of effects can therefore be plotted as having a probability close to zero. The position of
this point relative to the threshold indicates whether refinement of the assessment is
required (Figure 6.7-3). The use of this approach isillustrated in Appendix C10.

Aswell as being efficient, this approach has a number of other advantages.

Although defining the threshold may be sensitive and difficult, it need not be precise,
and should help risk managers to be explicit about what they are trying to protect. This
should be an improvement over the ‘triggers and ‘bright lines’ of the past, which have
perhaps suffered from arbitrary over-precision and less-than-explicit justification.

Uncertainty is dealt with explicitly in the risk assessment and assigned to the
parameters it affects, rather than being accommodated by implicit safety factors built
into a‘level of concern’. This avoids confusion as to whether particular types of
uncertainty have been allowed for, and to what extent.

The whole assessment process becomes focussed on quantifying the magnitude and
probability of effectsin a manner compatible with the threshold of acceptability. It
should therefore deliver precisely the information the risk manager needs to make a
decision.
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Figure 6.7-3. Comparison of screening-level assessment (Level 1). The magnitude of effectsis estimated
using a conservative extrapolation factor, for a conservatively high level of exposure. The predicted effect
therefore has a probability close to zero and is plotted close to the horizontal axis. For example, point A
indicates that the predicted risk may exceed the threshold, so further refinement of the assessment is

required. Point B indicates that the risk iswell below the threshold. Point C may require further assessment,
A

asthe full curve could cross the threshold if its slope was very steep (illustrated by dotted line).
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6.8  Practical implications

Currently, there are no generally-accepted definitions of assessment endpoints and
thresholds. It is unlikely there will ever be a standard list of definitions, if only because
the threshold of acceptability varies from case to case depending on the balance of risk
and benefit, as already mentioned. Therefore, risk assessors may need to consult risk
managers to agree definitions case-by-case at the start of each assessment. Initially
setting thresholds will be difficult, but it should become easier over time as precedents
are established.

The flexible approach envisaged here should be more efficient than rigid Tiers, but it
does imply that completed risk assessments will vary in the types and amounts of data
they contain. Therefore, when risk assessments are presented, the endpoints and
thresholds which were used and the choices made in refining the assessment, should all

be clearly explained.

Note that the flexible approach is not inconsistent with the division of responsibility
between risk assessors and managersin EPA. For example, in Figures 6.6-1 and 6.7-1,
the risk assessor quantifies the distribution of predicted risk, but the risk manager
determines the position of the threshold and makes the decision. However, to realize the
efficiency gains of the flexible approach requires close interaction between risk assessor
and risk manager: if this occurs only at the end of the process, the assessment may often
be refined unnecessarily far, or not far enough.

Throughout this chapter, risk assessment and risk management have been described as
functions conducted by USEPA, whose formal responsibilities they are. In practice, risk
assessment and management are also carried out informally by most registrants, as part of
their approach to product development and stewardship. The iterative process envisaged
in Figure 6.6-1 should be well suited to this, asit would help registrants to identify for
themselves which products may raise environmental concerns, which studies may be
required for risk assessment, and whether mitigation is likely to be required. This could

also benefit the Agency, by increasing the chance that the data submitted for registration
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are appropriate, and avoiding unnecessarily large or complex submissions which require
additional resources to evaluate. These benefits will be increased for both sides if thereis
good communication between registrants and Agency about the principles of assessment,
including the definition of acceptability thresholds. Again, thisis something which
should become easier over time as precedents are established.

6.9 Development of standardised procedures

As stated in the charge to ECOFRAM, procedures for risk assessment need to be
standardized and specific enough to allow different assessors supplied with the same

information to produce similar estimates of risk.

The flexible approach described in this chapter is not necessarily inconsistent with these
objectives:

The principles and tools could be standardized, even if the processis not.

Assessment endpoints could be standardized.

Thresholds of acceptability could be standardized as broad zones, perhaps with
standard variations for specified types of situation.

Perhaps even the paths through the assessment process could be standardized to an
extent, without too much loss of efficiency. As experience with probabilistic methods
accumulates, it is anticipated that the most efficient routes will follow a limited number
of paths through the options for refinement, with particular paths being more suitable
for particular types of pesticide (e.g. granulars vs. foliar sprays vs. seed treatments).
These paths could then form the basis for defining a standard set of assessment
sequences, which might be represented either as tiered processes or decision-trees.

Evenif it were desired to impose arigid structure, all of the tools for probabilistic
assessment are in their infancy so it istoo early to say where they should fit in the
structure (e.g. which studies go in which Tier). It would be necessary, therefore, to adopt
aflexible approach initially until sufficient experience accumulated to define a more
structured process.
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Whether the eventual processisto be flexible or rigid, cooperative case studies would
provide a means of testing the feasibility of ECOFRAM’ s proposals by applying them to
data on existing pesticides whose environmental effects are already well understood.
These case studies could be used to explore aternative assessment sequences, compare
rigid and flexible approaches and if possible identify alimited number of standard
sequences. They could aso be used to explore issues relating to the definition of
assessment endpoints and acceptability thresholds. Given the crucial role of the risk
managers it would be important for them to participate fully in the case studies, in
cooperation with risk managers and registrants.

Finally, given the potential complexities of probabilistic analyses, it may be useful to
establish standard approaches to presenting them so that they can be readily understood.
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7.0 RECOMMENDATIONS

71  OVERVIEW

The following recommendations result from hours of discussion over many months by
the ECOFRAM Terrestrial Workgroup. So that the reader can understand the rationale
for, and the significance of, the recommendations, it is necessary to briefly review the
process and the progress made to date.

7.1.1 The ECOFRAM Process-- Charge, Scope, and Limitations

EPA presented its Risk Quotient methodology to the FIFRA Scientific Advisory Panel
(SAP) in May of 1996. Asaresult of the SAP recommendations, ECOFRAM was
formed and given the charge to help EPA move past its current deterministic procedures.
Specificaly, ECOFRAM was to expand the pesticide risk assessment process to include
probabilistic risk assessment tools and methods for non-target organisms. It was not a
certainty that the Workgroup would conclude that this charge was feasible, given the

current database and the challenges involved.

To fulfill the charge, ECOFRAM began by evaluating the primary goal of ecological risk
assessment for pesticides. The resources the assessment is designed to protect were
identified. Conceptual models and assessment endpoints that would provide a broad
estimation of the ecological consequences of pesticide applications were identified. All
relevant guideline environmental fate and effects studies and models were reviewed in
detail. The potential utility of these studies and models in probabilistic assessments was
critically evaluated. Also, the strengths and limitations of current EPA risk assessment
methodology were discussed. These reviews and discussions formed the basis for
developing approaches to increase the usefulness and validity of risk assessment outputs.

Early in the review and discussion process, the Workgroup was forced to acknowledge

the enormity and complexity of the charge. It became clear that the charge, as given,
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simply could not be achieved in the time allotted with the databases available. Therefore,
the Workgroup chose to limit the scope of its efforts. It would place most emphasis on
birds, on oral exposure, and on direct effects. The Workgroup wants to emphasize that
this decision was based solely on resource limitations. Other taxa, other routes of
exposure, and other types of effects are also important and need to be considered.
However, these other areas will have to be covered in future efforts. Despite the limited

scope of effort, the Workgroup thinks that the concepts and approach developed will be

applicable to other taxa, routes of exposure, and types of effects. Thus, the present
recommendations of ECOFRAM can serve as a model for future improvements in the
ecological risk assessment process for pesticides.  Specifically, recommendations
identify dermal and inhalation routes of exposure as requiring additional work. Indirect
and sublethal effects merit consideration. Other vertebrate taxa, such as small mammals
and amphibians, will need to be considered. The Workgroup reluctantly agreed that
current mechanistic models were not generally applicable to probabilistic assessments for
pesticides. These models should be modified to allow their use in probabilistic
assessments and efforts should be made to gather the datasets necessary to run them.
Also, the Workgroup acknowledged that spatial scale and the relationship of croplandsto
non-croplands might be crucia in assessing the risk of a pesticide use. However, these
factors could not be considered in detail. The reader should note that ECOFRAM
recommendations include the orderly timing of efforts to advance ecological risk
assessment in the areas just mentioned above.

7.1.2 TheValueof Probabilistic Ecological Risk Assessment — Key Concepts from
ECOFRAM

Despite the somewhat limited scope of the ECOFRAM effort, the Workgroup recognizes
and endorses the tremendous value of probabilistic approaches. The current procedures
used by EPA provide deterministic, screening level, hazard assessments. These methods
can only give indirect estimates of the likelihood and magnitude of effects. The
approach advocated by ECOFRAM illustrates why probabilistic assessment is better than
the way things are being done now. Specifically, ECOFRAM has reached consensus

agreement on several key concepts that will form the basis for continued advancementsin
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Exposure should be expressed as the dose (mg/kg/day) a bird might receive.
Exposure should no longer be estimated as parts per million of a pesticide in the
environment. The new exposure analysis should draw on the equations of EPA
(1993), Pastorok (1996), Sample et a. (1997) and Nagy (1986). It will allow
inclusion of bird behavior that governsrisk. For example, factors such as avoidance
of food items with pesticide residues and the proportion of its diet that a bird gathers
from treated fields can be included in the analysis. Also, mechanistic models
expressing avian exposure to granular and foliar insecticides as mg/kg/day were
developed.

Existing databases on pesticide residues in food items (e.g., Hoerger and Kenaga
(1972), Fletcher et. al. (1994)) should be obtained and analyzed. The Workgroup
thinks that there is enough information in these databases to derive distributions of
residues to support probabilistic assessments.
The agro-ecosystem should be used as a unit for analysis and the identification of key
or focal species. Current EPA procedures do not fully take into account the bird
species that may actually be using the treated crop. In the ECOFRAM proposal,
screening level analysis would be done with generic species that represent different
feeding guilds. Higher levels of analysis would use focal species, the species
actually exposed to the pesticide, or species of specia concern, such as endangered
Species.

Three feeding scenarios should be considered for a dietary assessment -- short term,
medium term, and long term exposures. The Workgroup recommends that all three
feeding scenarios be addressed for each compound, unless a compelling argument
can be made about the relevance of medium or long term exposures. Short term
exposure scenarios would be evaluated to determine dose distributions for birds
exhibiting gorge feeding behavior and for birds feeding on granular pesticides.
Longer periodic exposure scenarios would represent more normal diurnal feeding

patterns and would be indicative of doses eliciting longer term acute and subchronic
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toxicity. The long term exposure scenario would also be used to assess effects. All
three scenarios should be evaluated in al risk assessments even at the screening level
unless there is specific evidence one is not relevant.

Existing acute avian toxicity tests should be modified or replaced to reflect the above
exposure scenarios. Exposure assessments under all three scenarios should present the
toxicity in terms of a distribution of doses based on the hourly or daily dose
(mg/kg/hr or mg/kg/day). Thus, effects tests would provide a dose that relates
directly to the detailed exposure analysis.

Extrapolation factors should be used to address inter-species variability issues. The
present report already includes techniques that can be used, with caution, to address
inter-species variability. Historical databases should be analyzed to refine and
standardize extrapolation factors for inter-specific variability.

Higher tier refinement of exposure and effects should be based on sensitivity of the
models used. Early stage screening evaluations are intended to be conservative.
Higher levels of refinement would systematically define the uncertainties inherent in
screening level assessments. The higher levels of refinement are driven by the
sengitivity of the models to changesin their input variables. The likely results of
reducing uncertainties in effects (susceptibility) or exposure will be evaluated. These
sengitivity analyses would enable risk assessors to efficiently move through the
higher levels of refinement.
A suite of techniques for combining information on exposure and effects to
characterize risk should be used and evaluated. These techniques are keyed to the
different levels of refinement and would help risk assessors and managers visualize
the results of an assessment. Many of these techniques can be used immediately and
they represent amajor step past the current Risk Quotient approach. These
techniques would allow some inferences to be made about effects at the population
level by simulating effects on individuals. However, additional work is still needed
on population models.

The Workgroup acknowledges that some of the above concepts do not relate solely to
probabilistic risk assessments. Nonetheless, we think that these concepts will form the
basis for the development of sound probabilistic assessments.
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7.1.3 The Need for Further Development and Validation

The Workgroup also acknowledges that many of the methods and procedures we are
proposing, athough plausible, have not been validated. In the context of this report,
validation is defined as a thorough characterization of the behavior and predictions of the
proposed methods and procedures, and comparison with the predictions from current
methods, as well as comparison with effects observed in the field. The Workgroup urges
the Agency to support analysis of several realistic case studies, such as the ones discussed
at the June 1997 meeting. The case studies should be developed into complete ecological
risk assessments. The assessments should build on the conceptual models and
assessment endpoints being proposed. They should use the methods and processes of
refinement for exposure, effects, and risk that are being proposed. The Workgroup wants
to emphasize that this development and validation exercise, which could be termed a
"proof of concept”, should be completed before EPA can develop afull process for
probabilistic ecological risk assessment.

The proof of concept exercise would be invaluable in exploring issues related to
assessment endpoints, evaluating assessment sequences, and providing areality check for
the process. Predictions from the various levels of refinement can be compared to the
predictions using current procedures. The proof of concept exercise should be the basis
for an ongoing dialogue between risk assessors and risk managers within the EPA and
elsawhere. This dialogue should be the foundation and justification for agreement on
what additional efforts, detailed below, will be most useful to risk managers. In the near
term (1-2 years) to medium term (3-4 years), these efforts may be additional research
projects, analyses of existing data, or new tests. In the long term (5 years and beyond),

these efforts could include afollow-up ECOFRAM that focuses on other taxa.

The above overview should be kept in mind as the reader considers the following
recommendations. The recommendations will be organized into 3 areas. exposure
assessment and characterization; effects assessment and characterization, and; risk

assessment. For each area, near term and medium term activities will be proposed. At
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this time, the Workgroup does not think it useful to make detailed recommendations for
long term activities. The necessary long term activities will depend on the outcomes of
the near and medium term activities. Nonetheless, the Workgroup wishes to point out
that long term activities will be needed to fully implement probabilistic assessments.

7.2 EXPOSURE ASSESSMENT AND CHARACTERIZATION

7.2.1 Near Term Activities

7.2.1.1 Improved Test Designs or New Tests

There are two significant gaps in the current data requirements. These gaps are
information on foliar dissipation and information on fate in invertebrates. ECOFRAM is
recommending that EPA develop guidance for a radio-labeled study, which evaluates the
degradation rate on avariety of plant types. It would include volatilization and washoff
rates on vegetation, dissipation rates on vegetation, and the fate of compoundsin
invertebrates. Also in the near term, other data gaps, highlighted in Section 3.10, which
are critical to the prediction of the environmental fate of a compound and potential
concentrations in wildlife food items, should be reviewed and prioritized. The most
critical needs should then be included in medium term activities.

7.2.1.2 Model Development, Validation, or New Models

In keeping with the basic concept of using the sensitivity of models to drive the
refinement process, models should be subjected to sensitivity analyses. These exercises
are important for data development activities because they will focus time and resources.

They will also form the basis for efficiently moving through the levels of refinement.

The EPA currently estimates pesticide concentrations in wildlife food items using
databases developed by Hoerger and Kenaga (1972) and Fletcher et. al. (1994). Residue
estimates used from these papers are point estimates immediately following application

of the pesticide. ECOFRAM recommends that EPA move away from point estimates of
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environmental residue concentrations, particularly in wildlife food items, and begin the
process of developing models specifically designed to predict concentrations in the
terrestrial environment. The Hoerger and Kenaga, 1972 and Fletcher et. a., 1994
databases can be used probabilistically. By gaining access to the full databases, it will be
possible to develop distributions of residue concentrations. This activity should start
immediately.

Although there are aquatic exposure models that could be adapted to predict some
terrestrial residue concentrations, there does not appear to be any exposure model
designed specifically for terrestrial environmental concentrations. A short term solution
to the current deficiency could be utilization of the ssmple mass balance equations
presented in Chapter 3 and Appendix C4 —C9, or reworking existing aquatic models (i.e.,
PRZM, EXAMS, AgDirift) to incorporate Monte Carlo simulations.

An analysis of the components of the nutritional (ecological energetics) equations should
be performed to produce distributions for various species. These distributions could then
be used rigorously in probabilistic assessments. Efforts for this activity should initialy
aim to develop distributions for the focal species. The Workgroup is aware that research
isunderway in the UK to break down one ecological energetics equation into various
elements, based on the extensive existing database.

Also, there should be development of models such as TEAAM, PARET, and the
granular models. In the interim, various spreadsheet models, using available risk analysis
software, will be important tools for the proof of concept exercise. At sometimeinthe
future, based on the results of the proof of concept exercise, there will be aneed to
standardize the various models.

7.2.1.3 Analyses of Existing Data or New Research Projects

The prediction of pesticide residue concentrations in terrestrial mediais the basis for all
pesticide risk assessments. Environmental fate data currently required by the EPA are

generaly adequate in providing data to run deterministic residue estimation models.
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However, only one study of each type is generally required, eliminating the possibility of
further developing the distributions needed for probabilistic assessments. Based on the
results of the above sensitivity analyses, there should be an exploration of ways to
develop the distributions needed for probabilistic assessments. Options could include
using empirical distributions, performing additional tests, or reviewing the literature and
agreeing on standard distributions. Simulations that employ, for example, empirical
(where adequate data available), uniform, log-normal, and triangular distributions can
eva uate the consequences of using empirical or assumed distributions.

There are several data sets that should be devel oped to reduce uncertainty and improve
the accuracy of exposure assessments. Registrants should pool their habitat use
information and develop a database characterizing wildlife species in and around
agricultural crops. If possible, information should be included on the home ranges of
these species. A similar type of database project should be undertaken for dietary habits,
and residues in the diets, of wildlife associated with agricultural systems. If such
information is not available from the registrants, the EPA should make the development
of these databases a priority. Information of this type would greatly increase our
confidence in performing risk assessments.

Based on the above results, EPA and the regulated Industry should agree on sets of focal

species for major crops.

Field studies can play an important role to 1) refine field residue and fate data, 2) provide
relevant life history and behavior information on focal species, 3) test estimates of
exposure to focal species, and 4) test hypotheses on exposure pathways. However, there
are many uncontrollable factors, which can confound the results and make interpretation
difficult. Consequently, field studies should be considered if they are designed to answer
specific questions that will help to clarify issues raised by the risk assessment. These
studies should be designed on a case-by-case basis from the results of the near term effort
and, if desirable, implemented in the medium and long term activities.
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Field studies should also be considered for the purpose of characterizing proposed risk
assessment models prior to full scale implementation of those models. ECOFRAM

recommends that EPA and Industry work together to design such studies.

7.2.2 Medium Term Activities

7.2.2.1 Improved Test Designs or New Tests

Develop guidance for the proposed test for foliar wash-off from plants and fate in
invertebrates. Do thisasaring test and evaluate the utility of the data for probabilistic
assessments. If the test is useful, it could then be required. HED and EFED could
explore coordinating changes in crop residue studies to increase the number of sampling
intervals, or other ways to make the tests more useful for estimating exposure of wildlife.

7.2.2.2 Model Development, Validation, or New Models

Validate exposure models, such as TEAAM, PARET, and granular models, developed in

the near term effort.

Critically review and evaluate the evidence of the significance of the inhalation and
dermal routes of exposure. |If appropriate, develop models or criteriafor deciding when
inhalation or dermal exposure, or non-dietary exposure, such as via puddles, may be
important and needs to be included in an assessment.

Other taxa, such as small mammals, amphibians, and insects, although part of the charge,

were not fully addressed. Look into models for exposure of other these other taxa.
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7.2.2.3 Analyses of Existing Data or New Research Projects

Parameterize the standard scenarios for the various major crops developed and agreed
upon in the near term effort.

7.2.3 Long Term Activities

As mentioned above, long term activities will depend on results from the near and
medium term efforts. Some examples of possible activities follow.

7.2.3.1 Improved Test Designs or New Tests

Develop guidelines, if appropriate, for tests needed to estimate exposure of small
mammals, amphibians, and non-target insects.

7.2.3.2 Model Development, Validation, or New Models

Develop models that will accommodate spatial considerations in assessments.

7.2.3.3 Analyses of Existing Data or New Research Projects

Use existing public databases to incorporate spatial characteristics of crops. Evaluate the

cost and feasibility of developing geographical information systems for major and minor

crops. Thiswould likely be done on a case-by-case basis.
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7.3 EFFECTSASSESSMENT AND CHARACTERIZATION

7.3.1 Near Term Activities

7.3.1.1 Improved Test Designs or New Tests

"Up and Down" or "Approximate Lethal Dose" test. The feasibility and utility of the
various mammalian and avian test designs should be evaluated. If afeasible and useful
test design can be agreed upon, draft guidance for it and perform ring tests. Correlate the
results of this activity with interspecies extrapolation factor analyses. Also, look into and
assess the benefits of using the ALD test compared to the full dose-response test for
obtaining data on additional test species. Thisis especially important with regard to the
robustness of assuming a slope from the full dose-response test for ALD test results.

The current avian acute dietary study is inadequate for incorporating into probabilistic
assessments. To be more suitable, the test should be designed to provide an estimate of
the daily dosage, which produces toxicity (i.e., mg/kg/day). It must provide a better
estimate of food consumption per individual. Draft guidance that considers ring testing.
Until thistest is redesigned a crude estimate of dose could be extracted from the current
study or perhaps from the reproduction test. However, it must be realized there is great
uncertainty in the estimate and the output must be used with a clear description of how
the uncertainty could affect the outcome of the risk assessment.

It should be noted that the OECD is currently addressing many of the problems identified
by the workgroup in the standard toxicity tests. ECOFRAM recommends the EPA work
with the OECD in developing test methodology for the ALD, acute dietary and
reproduction test. The final design of all standardized toxicity tests should anticipate the
need to develop quantitative measures of behavioral, and possibly physiological, effects.
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7.3.1.2 Analyses of Existing Data or New Research Projects

Given the wide range of variability in species sensitivities to pesticides, it is expected that
interspecific differences in sensitivity will result in large uncertainties in the risk
assessment. Practicalities associated with sample sizes, availability of test species, and
costs, need to be considered when designing atest program. To circumvent this problem
and still provide estimates of expected sensitivities, ECOFRAM has evaluated
interspecific relationships relying heavily on historical data. Section 4.2.3 discusses
various methods, which could be used to extrapolate sensitivity between species. All of
the methods presented utilize extrapolation factors based upon historical data until the
number of speciestested is greater than or equal to four. ECOFRAM recommends that
studies be done to determine the amount of uncertainty extrapolations between
compounds introduce into the assessment. This should first be done for the short term

exposure scenario, and ultimately for the medium term exposure scenario.

7.3.2 Medium Term Activities

7.3.2.1 Improved Test Designs or New Tests

The avian acute oral test iswell designed for producing an LD50. The output from this
test can be easily included in a probabilistic assessment. However, it may be important,
in some circumstances, to develop better estimates of low levels of mortality, e.g., the
LD5 or LD10. Modifications of the test would be required to reduce the uncertainty
around these low levels of mortality. The need to re-design the test will depend in part
on the results of the proof of concept exercise.

Look in to adding relevant sublethal observations to the acute oral LD50 study. Such
observations must be quantifiable and amenable to analysis and could include paralysis or
changes in response to stimuli or challenges. Also, look into including a dynamic
exposure regime for the revised LC50 study. Develop this based on experience with the

re-designed L C50 study and the new exposure data that will be available.
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Avoidance behavior of abird to a pesticide is a parameter overlooked in current
assessments. However, as research has shown (Section 3.3.4.1.3), it can play a
significant role in the exposure equation. Screening assessments should assume no
avoidance, however, if the screen indicates significant exposure to a compound, then an
estimate of avoidance can be extracted from food consumption data obtained in the acute
dietary test. Idedly, if it isthought avoidance significantly lowers the exposure potential,
at higher tiers of the assessment an avoidance test could be conducted. OECD is currently
drafting avoidance testing guidelines. Bearing in mind that research to date has
avoidance of treated seeds, work on avoidance of granules and foliar sprays would be
desirable.

Re-design the standard avian reproduction test. Thistest presents the greatest challenge
for probabilistic assessments and in its current form is not suitable for probability based
assessments. The current reproduction test is not designed to produce dose response
relationships. The standard output is the NOEL, a point estimate with no indication of
the variability around that estimate. Beyond the design of the test lays an even larger
problem of being able to detect chronic effects observed in the laboratory in field
situations. Section 4.2 discusses in great detail what the workgroup thinks are the many
limitations of the test and suggestions for its improvement.

Another issue relative to avian reproduction is how to incorporate modifications to
address changes in behavior, such as parental care. Possible study designs for this higher
tier test should be explored and evaluated.

As probabilistic risk assessments improve, estimates of depuration and metabolism may
become critical in providing accurate predictions of risk. Thus, a study that evaluates
kinetics, including rates of depuration and metabolism, may be warranted on a case-by-
case basis. In the interim, depuration and metabolism can be ignored with the
understanding it is afactor hidden in the acute dietary toxicity test. Beforeatestis
required EPA could evaluate the variation of pesticide metabolism between species. If
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significant relationships were found it may be possible to use the rat data generated for
the human health assessment.

Human health assessments require a metabolism study to evaluate the distribution of the
compound within various tissues and its depuration rate. These data are not required for
terrestrial ecological risk assessments but are also of great importance when evaluating
the effects on a pesticide when exposures are longer than that represented by an acute

oral toxicity study. The metabolism of a compound becomes important when secondary
toxicity isaconcern. The importance of metabolism and depuration and how they affect
the risk assessment is discussed in Sections 3.3.7.  Guidance should be developed for this
study.

Based on the conclusions from the analysis of the significance of dermal and inhalation
routes, guidelines should be developed for these routes of exposure, along with "when

required” criteria.

7.3.2.2 Model Development, Validation, or New Models

Building on the results of the species sensitivity analyses, look into developing standard
models for estimating sensitivities of species of concern.

7.3.2.3 Analyses of Existing Data or New Research Projects

One of biggest problems facing effects characterization is extrapolating laboratory
toxicity test results to effects under field conditions. This source of uncertainty in the risk
assessment may never be fully understood. However, as recommended throughout this
document, work must be done to validate any model put forth for ecological risk
assessments. Well designed field studies targeted to answer specific questions could
provide valuable insight into the accuracy of laboratory to field extrapolations.
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7.3.3 Long Term Activities

As mentioned above, long term activities will depend on the outcome of the near and
medium term activities. One possible effort would be, once avian reproduction study is
re-designed and validated, to look at incorporating dynamic exposure regimes.

74  RISK ASSESSMENT

741 Near Term Activities

A suite of methods for ecological risk assessment has been investigated. The most
critical activity in the near term is further development of these methods in the proof of
concept exercise. This exercise should employ redlistic case studies. Comparisons
should be made among risk assessment outputs from the various methods to help
determine the most useful and valid outputs. The exercise will require input and
feedback from risk managers. Thefirst level of refinement may be deterministic. At
higher levels of refinement, various options from the suite of methods may be used
depending on the outcomes of the proof of concept exercise. It iscritical to evaluate the
new scheme and to refine it in actual assessments.

7.4.2 Medium Term Activities

Modify population models for probabilistic assessments. Look into adding other routes
of exposure and types of effectsinto the Levels of Refinement.

7.5 PROCESSFOR CARRYING OUT THE RECOMMENDATIONS

It is suggested that this process be essentially the same for near and medium term
activities. Results from the near and medium term activities will determine what long

term activities should be pursued and the most efficient process for pursuing the long
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term activities. For near and medium term activities, EPA and Registrants should be
discouraged from attempting to devel op the information above as part of evaluating new
chemicals, that is, on a case-by-case basis. This piecemeal approach does not permit
sufficient standardization of individual activities, or coordination of overall programs.
There must be a partnering of Industry, EFED, ORD, and other interested groups as
needed. Past experience has shown that developing a Cooperative Research and
Development Agreement (CRADA) will be very time consuming. However, this type of
agreement allows for efficient use of public and private resources, and should be pursued
as soon as possible.

Due to the likely time involved in finalizing a CRADA, other mechanisms should aso be
pursued. Another avenue for accomplishing the goal would be the formation of an
informal research steering committee. Current members of ECOFRAM, EFED's
Implementation Team, ACPA, and other interested parties could meet to set the research
agenda, review projects for consistency, divide up projects and costs, and carry out the
needed research. This activity could aso include provision for contracting work to
independent labs or universities. The research steering committee would also have the
accountability of integrating the results of other ongoing projects, such as OECD
guideline development and the SETAC protocol effort. At different phases of the
activities, representatives from different interested groups could be added to, or step
down from, the research steering committee. This approach would allow the
implementation process to move forward as the CRADA is being finalized.
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7.6  CONCLUSIONS

7.6.1 Summary of Recommendations

The key ECOFRAM recommendations are summarized in Table 7.6.1.

Table 7.6.1 Summary of ECOFRAM Recommendations.

Timeframe Exposure Assessment | Effects Assessment Risk Assessment Implementation
and Characterization | and Characterization Process
Near Term -Develop protocol for | - Evauate the utility -Proof of Concept -Develop CRADA
study on washoff, fate | and feasibility of the Exercise -Form ad hoc Steering
in invertebrates ALD test Committee
- Perform sensitivity - Re-design and ring -Form EPA

analyses of models

- Analyze residue
databases, make
probabilistic

- Analyze nutritional
equations, make
probabilistic

- Develop exposure
models, eg.,
TEAAM, PARET

- Identify focal
species, home ranges,
residue levels by

agro-ecosystem

test the LCB0 test

- Evaluate the amount
of uncertainty
interspecies
extrapolations
introduce into the

assessment

Implementation Teams
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Timeframe Exposure Assessment | Effects Assessment Risk Assessment Implementation
and Characterization | and Characterization Process

Medium Term - Performring test for | - If needed, look into - Modify population -As above, ideally
study on washoff, fate | re-designing the LD50 models so they are under aCRADA
ininvertebrates test to get better better suited for
- Explore changesin estimates of the LD5 probabilistic
crop residue studiesto | or LD10 assessments
enhance usefulness - Add sublethal - Include other routes

for wildlife
assessments

- Validate exposure
models, eg.,
TEAAM, PARET
-Evduate the
significance of dermal
and inhalation
exposure, develop
techniquesto include
these if appropriate

- Include other taxa,
e.g, smal mammals,
amphibians

- Parameterize models

for standard scenarios

obseravtions or a
dynamic exposure
regime to the LC50
study

- Include evaluations
of avoidance behavior
for granules and foliar
sprays

- Re-design the
standard avian
reproduction test

- Evaluate test designs
to study effects on
parental behavior in
reproduction

- Develop guidance
for akinetics study of
metabolism and
depuration

- Include inhalation
and dermal exposure,
if needed

- Develop standard
models for estimating
sensitivities of species
of concern

- Look into
extrapolations from
laboratory to field

of exposure
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7.6.2 Evaluation of How the Workgroup Fulfilled the Charge

Given the above caveats, a key question that needs to be considered is"To what extent
did the Terrestrial Workgroup fulfill its charge?' The various elements of the charge, in
bold italics, and how these were addressed, follow. This evaluation is useful for
establishing additional follow-up efforts in probabilistic ecological risk assessment.
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Develop and validate risk assessment tools and processes that address increasing
levels of biological organization (e.g., individuals, populations, communities,
ecosystems) accounting for direct and indirect effects pesticides may cause. This
goal, as expected, was not achieved in the available time.

First address acute and chronic effects of pesticides on individuals and populations
of high risk species. Consider terrestrial vertebrates and aquatic vertebrates and
invertebrate first. The Terrestrial Workgroup made good progress towards
developing tools and processes for individual birds, and to some extent, bird
populations. Validation work remains to be done.

The process and tools should predict magnitude and probability of adverse effects.
Methods developed should consist of standardized procedures that integrate
estimates of pesticide exposure with knowledge about potential adverse effects.
Methods should account for sources of uncertainty and should be developed in the
context of FIFRA and EPA's Framework. The process and tools will predict
magnitude and probability of adverse effects. Exposure and adverse effects
information are integrated, but procedures have not been standardized. Some
important uncertainties have been identified and accounted for, while work remains
for others. The process and tools are entirely congruent with FIFRA and the EPA's
Framework.

The tools developed need to have reasonable scientific certainty and be capable of
being validated in a reasonable time frame. Probabilistic techniques should use
existing fate and effects data where possible. However, it may be necessary to
modify or discontinue current tests or develop new ones. Thetools developed are

expected to have reasonable certainty and validation is the next step in the process.
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The Workgroup carefully reviewed the utility of al current fate and effects tests and
recommended how these could be used. Similarly, recommendations were made for
how to modify current tests so that they will be more useful for probabilistic
assessments.

Methods developed for risk estimates should reflect a solid foundation in
environmental toxicology and should account for species sensitivity, environmental
fate, and other variables. The type of pesticide formulation, application techniques,
habitat types, and species associated with these habitats need to be considered. The
trandation of residue estimates into exposure estimates and routes of exposure
should be incorporated into the methodology. The several key concepts (see 7.1.2)
provide a solid foundation in for future development of probabilistic assessments.
The Workgroup proposed methods to account for species sensitivity, environmental
fate, habitat types, and species associated with the agro-ecosystem. Methods were
also proposed for trandlating residue estimates into exposure estimates, another key
concept. Work on other dermal and inhalation routes of exposure needs to be done.
Methods should be specific enough to allow different risk assessors supplied with
the same information to estimate similar values of risk. Therationale for the
choice of scenarios needsto be clearly stated. Assumptions and extrapolations
need to be specified and explained so the significance of the ecological risk
estimates is easily understood. The Workgroup stated the rationale for choices of
exposure and agro-ecosystem scenarios. Many unstated assumptions and
extrapolations inherent in the screening level assessments were explicated. It remains
to be seen if the methods are specific enough to alow different risk assessors supplied
with the same information to estimate similar values of risk.

The Workgroups are asked to define any additional developmental or validation
efforts that are needed for the probabilistic methods developed. These efforts are
detailed in sections 7.2 through 7.5.

The science of probabilistic risk assessment for pesticidesis still in itsinfancy with years
of development before it. This document should not be misconstrued as the final word on
future direction for probabilistic risk assessments of pesticides. The methods proposed

here represent what the Workgroup thought would be the best directions to take. These
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directions were limited by the data currently available and what we foresaw as the best
datawe could obtain in the future. Undoubtedly these methods will undergo

modification as the EPA and outside parties apply probabilistic risk assessment procedure
to everyday problems.

The efforts of the Workgroup should begin the process of providing probabilistic risk
assessments to the risk manager. The result will be predictions of the probability and
magnitude of the ecological effects resulting from pesticide application. However, the
evolution of probabilistic risk assessment cannot occur in the absence of input from the
risk manager. It isnow critical that risk managers provide the risk assessors direction in
developing methodology to supply the most useful information for making risk
management decisions. ECOFRAM strongly recommends that EPA establish aformal
method for risk assessors and managers to jointly review of risk assessment inputs and
outputs for their usefulness to risk management decisions. To start the development of
this forma method, risk managers should be full participants in the proof of concept

exercises.
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APPENDIX Al

Sixteen Guiding Principlesfor Probabilistic Risk Assessments

The following 16 guiding principles has been developed by the Environmental Protection Agency
to help ensure good scientific practices in the development of probabilistic risk assessment
(USEPA 1997). While the focus of the general framework and broad set of principlesis on Monte
Carlo Analysis the principles apply equally to the various techniques for conducting probabilistic

risk assessment.

Selecting Input Data and Distributions for Usein Monte Carlo Analysis

1. Conduct preliminary sensitivity analyses or numerical experimentsto
identify model structures, exposur e pathways, and model input assumptions
and parameter s that make important contributions to the assessment

endpoint and itsoverall variability and/or uncertainty.

The capabilities of current desktop computers allow for a number of "what if"
scenarios to be examined to provide insight into the effects on the analysis of selecting a
particular model, including or excluding specific exposure pathways, and making certain
assumptions with respect to model input parameters. The output of an analysis may be
sengitive to the structure of the exposure model. Alternative plausible models should be
examined to determine if structural differences have important effects on the output

distribution (in both the region of central tendency and in the tails).

Numerical experiments or senditivity analysis also should be used to identify exposure
pathways that contribute significantly to or even dominate total exposure. Resources

might be saved by excluding unimportant exposure pathways (e.g., those that do not
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contribute appreciably to the total exposure) from full probabilistic analyses or from
further analyses altogether. For important pathways, the model input parameters that
contribute the most to overall variability and uncertainty should be identified. Again,
unimportant parameters may be excluded from full probabilistic treatment. For important
parameters, empirical distributions or parametric distributions may be used. Once again,
numerical experiments should be conducted to determine the sensitivity of the output to
different assumptions with respect to the distributional forms of the input parameters.
Identifying important pathways and parameters where assumptions about distributional
form contribute significantly to overall uncertainty may aid in focusing data gathering
efforts.

Dependencies or correlations between model parameters also may have a significant
influence on the outcome of the analysis. The sengitivity of the analysis to various
assumptions about known or suspected dependencies should be examined. Those
dependencies or correlations identified as having a significant effect must be accounted for

in later analyses.

Conducting a systematic sensitivity study may not be atrivial undertaking, involving
significant effort on the part of the risk assessor. Risk assessors should exercise great care
not to prematurely or unjustifiably eliminate pathways or parameters from full probabilistic
treatment. Any parameter or pathway eliminated from full probabilistic treatment should

be identified and the reasons for its elimination thoroughly discussed.
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2. Restrict the use of probabilistic assessment to significant pathways and

parameters.

Although specifying distributions for al or most variablesin aMonte Carlo analysisis
useful for exploring and characterizing the full range of variability and uncertainty, it is
often unnecessary and not cost effective. If a systematic preliminary sensitivity analysis
(that includes examining the effects of various assumptions about distributions) was
undertaken and documented, and exposure pathways and parameters that contribute little
to the assessment endpoint and its overall uncertainty and variability were identified, the
risk assessor may simplify the Monte Carlo analysis by focusing on those pathways and
parameters identified as significant. From a computational standpoint, a Monte Carlo
analysis can include amix of point estimates and distributions for the input parametersto
the exposure model. However, the risk assessor and risk manager should continually
review the basis for "fixing" certain parameters as point values to avoid the perception that

these are indeed constants that are not subject to change.
3. Usedatato inform the choice of input distributionsfor model parameters.

The choice of input distribution should aways be based on all information (both
gualitative and quantitative) available for a parameter. In selecting a distributional form,
the risk assessor should consider the quality of the information in the database and ask a
series of questions including (but not limited to):

» Isthere any mechanistic basis for choosing a distributional family?

» Isthe shape of the distribution likely to be dictated by physical or biological

properties or other mechanisms?

¢ |sthevariable discrete or continuous?
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¢ \What are the bounds of the variable?

o Isthedistribution skewed or symmetric?

» Ifthedistribution is thought to be skewed, in which direction?

» What other aspects of the shape of the distribution are known?

When data for an important parameter are limited, it may be useful to define plausible
alternative scenarios to incorporate some information on the impact of that variable in the
overall assessment (as done in the sengitivity analysis). In doing this, the risk assessor
should select the widest distributional family consistent with the state of knowledge and
should, for important parameters, test the sensitivity of the findings and conclusions to

changes in distributional shape.

Surrogate data can be used to develop distributions when they can be
appropriately justified.

The risk assessor should always seek representative data of the highest quality
available. However, the question of how representative the available data are is often a
seriousissue. Many times, the available data do not represent conditions (e.g., temporal
and spatia scales) in the population being assessed. The assessor should identify and
evauate the factors that introduce uncertainty into the assessment. In particular, attention
should be given to potential biases that may exist in surrogate data and their implications

for the representativeness of the fitted distributions.

When aternative surrogate data sets are available, care must be taken when selecting
or combining sets. The risk assessor should use accepted statistical practices and
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technigues when combining data, consulting with the appropriate experts as needed.

Whenever possible, collect site or case specific data (even in limited quantities) to help
justify the use of the distribution based on surrogate data. The use of surrogate data to
develop distributions can be made more defensible when case-specific data are obtained to

check the reasonableness of the distribution.

When obtaining empirical datato develop input distributionsfor exposure
model parameters, the basic tenets of environmental sampling should be
followed. Further, particular attention should be given to the quality of

information at the tails of the distribution.

Asagenera rule, the development of data for use in distributions should be carried

out using the basic principles employed for exposure assessments. For example,

*  Receptor-based sampling in which data are obtained on the receptor or on the

exposure fields relative to the receptor;

» Sampling at appropriate spatial or temporal scales using an appropriate
stratified random sampling methodol ogy;

» Using two-stage sampling to determine and eval uate the degree of error,

statistical power, and subsequent sampling needs; and

Establishing data quality objectives.

In addition, the quality of information at the tails of input distributions often is not as
good as the central values. The assessor should pay particular attention to this issue when

devising data collection strategies.
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Depending on the objectives of the assessment, expert® judgment can be included
either within the computational analysis by developing distributions using
various methods or by using judgmentsto select and separ ately analyze
alternate, but plausible, scenarios. When expert judgment is employed, the

analyst should be very explicit about itsuse.

Expert judgment is used, to some extent, throughout all exposure assessments.
However, debatable issues arise when applying expert opinions to input distributions for
Monte Carlo analyses. Using expert judgment to derive a distribution for an input
parameter can reflect bounds on the state of knowledge and provide insights into the
overall uncertainty. Thismay be particularly useful during the sensitivity analysisto help
identify important variables for which additional data may be needed. However,
distributions based exclusively or primarily on expert judgment reflect the opinion of
individuals or groups and, therefore, may be subject to considerable bias. Further, without
explicit documentation of the use of expert opinions, the distributions based on these
judgments might be erroneously viewed as equivalent to those based on hard data. When
distributions based on expert judgement have an appreciable effect on the outcome of an

analysis, it is critical to highlight this in the uncertainty characterization.

Evaluating Variability and Uncertainty

The concepts of variability and uncertainty aredistinct. They can betracked
and evaluated separately during an analysis, or they can be analyzed within the
same computational framework. Separating variability and uncertainty is
necessary to provide greater accountability and transparency. The decision

about how to track them separately must be made on a case-by-case basis for

1 Accordi ng to NCRP (1996), an expert has (1) training and experience in the subject arearesulting in

superior knowledge in the field, (2) access to relevant information, (3) an ability to process and effectively use the
information, and (4) is recognized by his or her peers or those conducting the study as qualified to provide
judgments about assumptions, models, and model parameters at the level of detail required.
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each variable.

Variability represents the true heterogeneity or diversity inherent in awell-
characterized population. Assuch, it is not reducible through further study. Uncertainty
represents alack of knowledge about the population. It is sometimes reducible through
further study. Therefore, separating variability and uncertainty during the analysisis
necessary to identify parameters for which additional data are needed. There can be
uncertainty about the variability within a population. For example, if only a subset of the
population is measured or if the population is otherwise under-sampled, the resulting
measure of variability may differ from the true population variability. This situation may
aso indicate the need for additional data collection.

There are methodological differencesregarding how variability and uncertainty

areaddressed in a Monte Carlo analysis.

There are formal approaches for distinguishing between and evauating variability and
uncertainty. When deciding on methods for evaluating variability and uncertainty, the

assessor should consider the following issues.

» Variability depends on the averaging time, averaging space, or other dimensions

in which the data are aggregated.

» Sandard data analysis tends to under state uncertainty by focusing solely on
random error within a data set. Conversely, standard data analysis tends to

overstate variability by implicitly including measurement errors.

e Various types of model errors can represent important sources of uncertainty.
Alternative conceptual or mathematical models are a potentially important source

of uncertainty. A major threat to the accuracy of a variability analysisis a lack of
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9.

representativeness of the data.

Methods should investigate the numerical stability of the moments and thetails
of the distributions.

For the purposes of these principles, numerical stability refers to observed numerical
changes in the characteristics (i.e., mean, variance, percentiles) of the Monte Carlo
simulation output distribution as the number of simulations increases. Depending on the
algebraic structure of the model and the exact distributional forms used to characterize the
input parameters, some outputs will stabilize quickly, that is, the output mean and variance
tend to reach more or less constant values after relatively few sampling iterations and
exhibit only relatively minor fluctuations as the number of smulationsincreases. On the
other hand, some model outputs may take longer to stabilize. The risk assessor should
take care to be aware of these behaviors. Risk assessors should always use more
simulations than 